Step |
Hyp |
Ref |
Expression |
1 |
|
swrdccatin2.l |
|- L = ( # ` A ) |
2 |
|
oveq1 |
|- ( L = ( # ` A ) -> ( L ... N ) = ( ( # ` A ) ... N ) ) |
3 |
2
|
eleq2d |
|- ( L = ( # ` A ) -> ( M e. ( L ... N ) <-> M e. ( ( # ` A ) ... N ) ) ) |
4 |
|
id |
|- ( L = ( # ` A ) -> L = ( # ` A ) ) |
5 |
|
oveq1 |
|- ( L = ( # ` A ) -> ( L + ( # ` B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
6 |
4 5
|
oveq12d |
|- ( L = ( # ` A ) -> ( L ... ( L + ( # ` B ) ) ) = ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) |
7 |
6
|
eleq2d |
|- ( L = ( # ` A ) -> ( N e. ( L ... ( L + ( # ` B ) ) ) <-> N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) ) |
8 |
3 7
|
anbi12d |
|- ( L = ( # ` A ) -> ( ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) <-> ( M e. ( ( # ` A ) ... N ) /\ N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) ) ) |
9 |
1 8
|
ax-mp |
|- ( ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) <-> ( M e. ( ( # ` A ) ... N ) /\ N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) ) |
10 |
|
lencl |
|- ( A e. Word V -> ( # ` A ) e. NN0 ) |
11 |
|
elnn0uz |
|- ( ( # ` A ) e. NN0 <-> ( # ` A ) e. ( ZZ>= ` 0 ) ) |
12 |
|
fzss1 |
|- ( ( # ` A ) e. ( ZZ>= ` 0 ) -> ( ( # ` A ) ... N ) C_ ( 0 ... N ) ) |
13 |
11 12
|
sylbi |
|- ( ( # ` A ) e. NN0 -> ( ( # ` A ) ... N ) C_ ( 0 ... N ) ) |
14 |
13
|
sseld |
|- ( ( # ` A ) e. NN0 -> ( M e. ( ( # ` A ) ... N ) -> M e. ( 0 ... N ) ) ) |
15 |
|
fzss1 |
|- ( ( # ` A ) e. ( ZZ>= ` 0 ) -> ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) C_ ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) |
16 |
11 15
|
sylbi |
|- ( ( # ` A ) e. NN0 -> ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) C_ ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) |
17 |
16
|
sseld |
|- ( ( # ` A ) e. NN0 -> ( N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) -> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) |
18 |
14 17
|
anim12d |
|- ( ( # ` A ) e. NN0 -> ( ( M e. ( ( # ` A ) ... N ) /\ N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) -> ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) ) |
19 |
10 18
|
syl |
|- ( A e. Word V -> ( ( M e. ( ( # ` A ) ... N ) /\ N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) -> ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) ) |
20 |
19
|
adantr |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( ( # ` A ) ... N ) /\ N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) -> ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) ) |
21 |
9 20
|
syl5bi |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) ) |
22 |
21
|
imp |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) |
23 |
|
swrdccatfn |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) |
24 |
22 23
|
syldan |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) |
25 |
|
fzmmmeqm |
|- ( M e. ( L ... N ) -> ( ( N - L ) - ( M - L ) ) = ( N - M ) ) |
26 |
25
|
oveq2d |
|- ( M e. ( L ... N ) -> ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) = ( 0 ..^ ( N - M ) ) ) |
27 |
26
|
fneq2d |
|- ( M e. ( L ... N ) -> ( ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) <-> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) ) |
28 |
27
|
ad2antrl |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) <-> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( N - M ) ) ) ) |
29 |
24 28
|
mpbird |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) Fn ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) |
30 |
|
simplr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> B e. Word V ) |
31 |
|
elfzmlbm |
|- ( M e. ( L ... N ) -> ( M - L ) e. ( 0 ... ( N - L ) ) ) |
32 |
31
|
ad2antrl |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( M - L ) e. ( 0 ... ( N - L ) ) ) |
33 |
|
lencl |
|- ( B e. Word V -> ( # ` B ) e. NN0 ) |
34 |
33
|
nn0zd |
|- ( B e. Word V -> ( # ` B ) e. ZZ ) |
35 |
34
|
adantl |
|- ( ( A e. Word V /\ B e. Word V ) -> ( # ` B ) e. ZZ ) |
36 |
|
elfzmlbp |
|- ( ( ( # ` B ) e. ZZ /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( N - L ) e. ( 0 ... ( # ` B ) ) ) |
37 |
35 36
|
sylan |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( N - L ) e. ( 0 ... ( # ` B ) ) ) |
38 |
37
|
adantrl |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( N - L ) e. ( 0 ... ( # ` B ) ) ) |
39 |
|
swrdvalfn |
|- ( ( B e. Word V /\ ( M - L ) e. ( 0 ... ( N - L ) ) /\ ( N - L ) e. ( 0 ... ( # ` B ) ) ) -> ( B substr <. ( M - L ) , ( N - L ) >. ) Fn ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) |
40 |
30 32 38 39
|
syl3anc |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( B substr <. ( M - L ) , ( N - L ) >. ) Fn ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) |
41 |
|
simpll |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( A e. Word V /\ B e. Word V ) ) |
42 |
|
elfzelz |
|- ( M e. ( L ... N ) -> M e. ZZ ) |
43 |
|
zaddcl |
|- ( ( k e. ZZ /\ M e. ZZ ) -> ( k + M ) e. ZZ ) |
44 |
43
|
expcom |
|- ( M e. ZZ -> ( k e. ZZ -> ( k + M ) e. ZZ ) ) |
45 |
42 44
|
syl |
|- ( M e. ( L ... N ) -> ( k e. ZZ -> ( k + M ) e. ZZ ) ) |
46 |
45
|
ad2antrl |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( k e. ZZ -> ( k + M ) e. ZZ ) ) |
47 |
|
elfzoelz |
|- ( k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) -> k e. ZZ ) |
48 |
46 47
|
impel |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( k + M ) e. ZZ ) |
49 |
|
df-3an |
|- ( ( A e. Word V /\ B e. Word V /\ ( k + M ) e. ZZ ) <-> ( ( A e. Word V /\ B e. Word V ) /\ ( k + M ) e. ZZ ) ) |
50 |
41 48 49
|
sylanbrc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( A e. Word V /\ B e. Word V /\ ( k + M ) e. ZZ ) ) |
51 |
|
ccatsymb |
|- ( ( A e. Word V /\ B e. Word V /\ ( k + M ) e. ZZ ) -> ( ( A ++ B ) ` ( k + M ) ) = if ( ( k + M ) < ( # ` A ) , ( A ` ( k + M ) ) , ( B ` ( ( k + M ) - ( # ` A ) ) ) ) ) |
52 |
50 51
|
syl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( ( A ++ B ) ` ( k + M ) ) = if ( ( k + M ) < ( # ` A ) , ( A ` ( k + M ) ) , ( B ` ( ( k + M ) - ( # ` A ) ) ) ) ) |
53 |
|
elfz2 |
|- ( M e. ( L ... N ) <-> ( ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) /\ ( L <_ M /\ M <_ N ) ) ) |
54 |
|
zre |
|- ( L e. ZZ -> L e. RR ) |
55 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
56 |
54 55
|
anim12i |
|- ( ( L e. ZZ /\ M e. ZZ ) -> ( L e. RR /\ M e. RR ) ) |
57 |
|
elnn0z |
|- ( k e. NN0 <-> ( k e. ZZ /\ 0 <_ k ) ) |
58 |
|
zre |
|- ( k e. ZZ -> k e. RR ) |
59 |
|
0re |
|- 0 e. RR |
60 |
59
|
jctl |
|- ( L e. RR -> ( 0 e. RR /\ L e. RR ) ) |
61 |
60
|
ad2antrl |
|- ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( 0 e. RR /\ L e. RR ) ) |
62 |
|
id |
|- ( ( k e. RR /\ M e. RR ) -> ( k e. RR /\ M e. RR ) ) |
63 |
62
|
adantrl |
|- ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( k e. RR /\ M e. RR ) ) |
64 |
|
le2add |
|- ( ( ( 0 e. RR /\ L e. RR ) /\ ( k e. RR /\ M e. RR ) ) -> ( ( 0 <_ k /\ L <_ M ) -> ( 0 + L ) <_ ( k + M ) ) ) |
65 |
61 63 64
|
syl2anc |
|- ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( ( 0 <_ k /\ L <_ M ) -> ( 0 + L ) <_ ( k + M ) ) ) |
66 |
|
recn |
|- ( L e. RR -> L e. CC ) |
67 |
66
|
addid2d |
|- ( L e. RR -> ( 0 + L ) = L ) |
68 |
67
|
ad2antrl |
|- ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( 0 + L ) = L ) |
69 |
68
|
breq1d |
|- ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( ( 0 + L ) <_ ( k + M ) <-> L <_ ( k + M ) ) ) |
70 |
65 69
|
sylibd |
|- ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( ( 0 <_ k /\ L <_ M ) -> L <_ ( k + M ) ) ) |
71 |
|
simprl |
|- ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> L e. RR ) |
72 |
|
readdcl |
|- ( ( k e. RR /\ M e. RR ) -> ( k + M ) e. RR ) |
73 |
72
|
adantrl |
|- ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( k + M ) e. RR ) |
74 |
71 73
|
lenltd |
|- ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( L <_ ( k + M ) <-> -. ( k + M ) < L ) ) |
75 |
70 74
|
sylibd |
|- ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( ( 0 <_ k /\ L <_ M ) -> -. ( k + M ) < L ) ) |
76 |
75
|
expd |
|- ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( 0 <_ k -> ( L <_ M -> -. ( k + M ) < L ) ) ) |
77 |
76
|
com12 |
|- ( 0 <_ k -> ( ( k e. RR /\ ( L e. RR /\ M e. RR ) ) -> ( L <_ M -> -. ( k + M ) < L ) ) ) |
78 |
77
|
expd |
|- ( 0 <_ k -> ( k e. RR -> ( ( L e. RR /\ M e. RR ) -> ( L <_ M -> -. ( k + M ) < L ) ) ) ) |
79 |
58 78
|
mpan9 |
|- ( ( k e. ZZ /\ 0 <_ k ) -> ( ( L e. RR /\ M e. RR ) -> ( L <_ M -> -. ( k + M ) < L ) ) ) |
80 |
57 79
|
sylbi |
|- ( k e. NN0 -> ( ( L e. RR /\ M e. RR ) -> ( L <_ M -> -. ( k + M ) < L ) ) ) |
81 |
56 80
|
mpan9 |
|- ( ( ( L e. ZZ /\ M e. ZZ ) /\ k e. NN0 ) -> ( L <_ M -> -. ( k + M ) < L ) ) |
82 |
1
|
breq2i |
|- ( ( k + M ) < L <-> ( k + M ) < ( # ` A ) ) |
83 |
82
|
notbii |
|- ( -. ( k + M ) < L <-> -. ( k + M ) < ( # ` A ) ) |
84 |
81 83
|
syl6ib |
|- ( ( ( L e. ZZ /\ M e. ZZ ) /\ k e. NN0 ) -> ( L <_ M -> -. ( k + M ) < ( # ` A ) ) ) |
85 |
84
|
ex |
|- ( ( L e. ZZ /\ M e. ZZ ) -> ( k e. NN0 -> ( L <_ M -> -. ( k + M ) < ( # ` A ) ) ) ) |
86 |
85
|
com23 |
|- ( ( L e. ZZ /\ M e. ZZ ) -> ( L <_ M -> ( k e. NN0 -> -. ( k + M ) < ( # ` A ) ) ) ) |
87 |
86
|
3adant2 |
|- ( ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) -> ( L <_ M -> ( k e. NN0 -> -. ( k + M ) < ( # ` A ) ) ) ) |
88 |
87
|
imp |
|- ( ( ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) /\ L <_ M ) -> ( k e. NN0 -> -. ( k + M ) < ( # ` A ) ) ) |
89 |
88
|
adantrr |
|- ( ( ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) /\ ( L <_ M /\ M <_ N ) ) -> ( k e. NN0 -> -. ( k + M ) < ( # ` A ) ) ) |
90 |
53 89
|
sylbi |
|- ( M e. ( L ... N ) -> ( k e. NN0 -> -. ( k + M ) < ( # ` A ) ) ) |
91 |
90
|
ad2antrl |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( k e. NN0 -> -. ( k + M ) < ( # ` A ) ) ) |
92 |
|
elfzonn0 |
|- ( k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) -> k e. NN0 ) |
93 |
91 92
|
impel |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> -. ( k + M ) < ( # ` A ) ) |
94 |
93
|
iffalsed |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> if ( ( k + M ) < ( # ` A ) , ( A ` ( k + M ) ) , ( B ` ( ( k + M ) - ( # ` A ) ) ) ) = ( B ` ( ( k + M ) - ( # ` A ) ) ) ) |
95 |
|
zcn |
|- ( k e. ZZ -> k e. CC ) |
96 |
95
|
adantl |
|- ( ( ( L e. ZZ /\ M e. ZZ ) /\ k e. ZZ ) -> k e. CC ) |
97 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
98 |
97
|
ad2antlr |
|- ( ( ( L e. ZZ /\ M e. ZZ ) /\ k e. ZZ ) -> M e. CC ) |
99 |
|
zcn |
|- ( L e. ZZ -> L e. CC ) |
100 |
99
|
ad2antrr |
|- ( ( ( L e. ZZ /\ M e. ZZ ) /\ k e. ZZ ) -> L e. CC ) |
101 |
96 98 100
|
addsubassd |
|- ( ( ( L e. ZZ /\ M e. ZZ ) /\ k e. ZZ ) -> ( ( k + M ) - L ) = ( k + ( M - L ) ) ) |
102 |
|
oveq2 |
|- ( L = ( # ` A ) -> ( ( k + M ) - L ) = ( ( k + M ) - ( # ` A ) ) ) |
103 |
102
|
eqeq1d |
|- ( L = ( # ` A ) -> ( ( ( k + M ) - L ) = ( k + ( M - L ) ) <-> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) ) |
104 |
101 103
|
syl5ib |
|- ( L = ( # ` A ) -> ( ( ( L e. ZZ /\ M e. ZZ ) /\ k e. ZZ ) -> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) ) |
105 |
1 104
|
ax-mp |
|- ( ( ( L e. ZZ /\ M e. ZZ ) /\ k e. ZZ ) -> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) |
106 |
105
|
ex |
|- ( ( L e. ZZ /\ M e. ZZ ) -> ( k e. ZZ -> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) ) |
107 |
106
|
3adant2 |
|- ( ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) -> ( k e. ZZ -> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) ) |
108 |
107
|
adantr |
|- ( ( ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) /\ ( L <_ M /\ M <_ N ) ) -> ( k e. ZZ -> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) ) |
109 |
53 108
|
sylbi |
|- ( M e. ( L ... N ) -> ( k e. ZZ -> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) ) |
110 |
109
|
ad2antrl |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( k e. ZZ -> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) ) |
111 |
110 47
|
impel |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( ( k + M ) - ( # ` A ) ) = ( k + ( M - L ) ) ) |
112 |
111
|
fveq2d |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( B ` ( ( k + M ) - ( # ` A ) ) ) = ( B ` ( k + ( M - L ) ) ) ) |
113 |
52 94 112
|
3eqtrd |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( ( A ++ B ) ` ( k + M ) ) = ( B ` ( k + ( M - L ) ) ) ) |
114 |
|
ccatcl |
|- ( ( A e. Word V /\ B e. Word V ) -> ( A ++ B ) e. Word V ) |
115 |
114
|
adantr |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( A ++ B ) e. Word V ) |
116 |
11
|
biimpi |
|- ( ( # ` A ) e. NN0 -> ( # ` A ) e. ( ZZ>= ` 0 ) ) |
117 |
1 116
|
eqeltrid |
|- ( ( # ` A ) e. NN0 -> L e. ( ZZ>= ` 0 ) ) |
118 |
|
fzss1 |
|- ( L e. ( ZZ>= ` 0 ) -> ( L ... N ) C_ ( 0 ... N ) ) |
119 |
10 117 118
|
3syl |
|- ( A e. Word V -> ( L ... N ) C_ ( 0 ... N ) ) |
120 |
119
|
sselda |
|- ( ( A e. Word V /\ M e. ( L ... N ) ) -> M e. ( 0 ... N ) ) |
121 |
120
|
ad2ant2r |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> M e. ( 0 ... N ) ) |
122 |
1 7
|
ax-mp |
|- ( N e. ( L ... ( L + ( # ` B ) ) ) <-> N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) ) |
123 |
10 116 15
|
3syl |
|- ( A e. Word V -> ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) C_ ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) |
124 |
123
|
adantr |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) C_ ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) |
125 |
124
|
sseld |
|- ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) -> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) |
126 |
125
|
impcom |
|- ( ( N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) /\ ( A e. Word V /\ B e. Word V ) ) -> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) |
127 |
|
ccatlen |
|- ( ( A e. Word V /\ B e. Word V ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
128 |
127
|
oveq2d |
|- ( ( A e. Word V /\ B e. Word V ) -> ( 0 ... ( # ` ( A ++ B ) ) ) = ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) |
129 |
128
|
eleq2d |
|- ( ( A e. Word V /\ B e. Word V ) -> ( N e. ( 0 ... ( # ` ( A ++ B ) ) ) <-> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) |
130 |
129
|
adantl |
|- ( ( N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) /\ ( A e. Word V /\ B e. Word V ) ) -> ( N e. ( 0 ... ( # ` ( A ++ B ) ) ) <-> N e. ( 0 ... ( ( # ` A ) + ( # ` B ) ) ) ) ) |
131 |
126 130
|
mpbird |
|- ( ( N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) /\ ( A e. Word V /\ B e. Word V ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) |
132 |
131
|
ex |
|- ( N e. ( ( # ` A ) ... ( ( # ` A ) + ( # ` B ) ) ) -> ( ( A e. Word V /\ B e. Word V ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) ) |
133 |
122 132
|
sylbi |
|- ( N e. ( L ... ( L + ( # ` B ) ) ) -> ( ( A e. Word V /\ B e. Word V ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) ) |
134 |
133
|
impcom |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) |
135 |
134
|
adantrl |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) |
136 |
115 121 135
|
3jca |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( A ++ B ) e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) ) |
137 |
26
|
eleq2d |
|- ( M e. ( L ... N ) -> ( k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) <-> k e. ( 0 ..^ ( N - M ) ) ) ) |
138 |
137
|
ad2antrl |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) <-> k e. ( 0 ..^ ( N - M ) ) ) ) |
139 |
138
|
biimpa |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> k e. ( 0 ..^ ( N - M ) ) ) |
140 |
|
swrdfv |
|- ( ( ( ( A ++ B ) e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) /\ k e. ( 0 ..^ ( N - M ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` k ) = ( ( A ++ B ) ` ( k + M ) ) ) |
141 |
136 139 140
|
syl2an2r |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` k ) = ( ( A ++ B ) ` ( k + M ) ) ) |
142 |
34 36
|
sylan |
|- ( ( B e. Word V /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( N - L ) e. ( 0 ... ( # ` B ) ) ) |
143 |
142
|
ad2ant2l |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( N - L ) e. ( 0 ... ( # ` B ) ) ) |
144 |
30 32 143
|
3jca |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( B e. Word V /\ ( M - L ) e. ( 0 ... ( N - L ) ) /\ ( N - L ) e. ( 0 ... ( # ` B ) ) ) ) |
145 |
|
swrdfv |
|- ( ( ( B e. Word V /\ ( M - L ) e. ( 0 ... ( N - L ) ) /\ ( N - L ) e. ( 0 ... ( # ` B ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( ( B substr <. ( M - L ) , ( N - L ) >. ) ` k ) = ( B ` ( k + ( M - L ) ) ) ) |
146 |
144 145
|
sylan |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( ( B substr <. ( M - L ) , ( N - L ) >. ) ` k ) = ( B ` ( k + ( M - L ) ) ) ) |
147 |
113 141 146
|
3eqtr4d |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ k e. ( 0 ..^ ( ( N - L ) - ( M - L ) ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` k ) = ( ( B substr <. ( M - L ) , ( N - L ) >. ) ` k ) ) |
148 |
29 40 147
|
eqfnfvd |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( B substr <. ( M - L ) , ( N - L ) >. ) ) |
149 |
148
|
ex |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( B substr <. ( M - L ) , ( N - L ) >. ) ) ) |