| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swrdcl |
|- ( W e. Word V -> ( W substr <. M , N >. ) e. Word V ) |
| 2 |
|
wrdf |
|- ( ( W substr <. M , N >. ) e. Word V -> ( W substr <. M , N >. ) : ( 0 ..^ ( # ` ( W substr <. M , N >. ) ) ) --> V ) |
| 3 |
1 2
|
syl |
|- ( W e. Word V -> ( W substr <. M , N >. ) : ( 0 ..^ ( # ` ( W substr <. M , N >. ) ) ) --> V ) |
| 4 |
3
|
3ad2ant1 |
|- ( ( W e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) -> ( W substr <. M , N >. ) : ( 0 ..^ ( # ` ( W substr <. M , N >. ) ) ) --> V ) |
| 5 |
|
swrdlen |
|- ( ( W e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W substr <. M , N >. ) ) = ( N - M ) ) |
| 6 |
5
|
oveq2d |
|- ( ( W e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) -> ( 0 ..^ ( # ` ( W substr <. M , N >. ) ) ) = ( 0 ..^ ( N - M ) ) ) |
| 7 |
6
|
feq2d |
|- ( ( W e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) -> ( ( W substr <. M , N >. ) : ( 0 ..^ ( # ` ( W substr <. M , N >. ) ) ) --> V <-> ( W substr <. M , N >. ) : ( 0 ..^ ( N - M ) ) --> V ) ) |
| 8 |
4 7
|
mpbid |
|- ( ( W e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) -> ( W substr <. M , N >. ) : ( 0 ..^ ( N - M ) ) --> V ) |