Step |
Hyp |
Ref |
Expression |
1 |
|
swrdval2 |
|- ( ( S e. Word A /\ F e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` S ) ) ) -> ( S substr <. F , L >. ) = ( x e. ( 0 ..^ ( L - F ) ) |-> ( S ` ( x + F ) ) ) ) |
2 |
1
|
fveq1d |
|- ( ( S e. Word A /\ F e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` S ) ) ) -> ( ( S substr <. F , L >. ) ` X ) = ( ( x e. ( 0 ..^ ( L - F ) ) |-> ( S ` ( x + F ) ) ) ` X ) ) |
3 |
|
fvoveq1 |
|- ( x = X -> ( S ` ( x + F ) ) = ( S ` ( X + F ) ) ) |
4 |
|
eqid |
|- ( x e. ( 0 ..^ ( L - F ) ) |-> ( S ` ( x + F ) ) ) = ( x e. ( 0 ..^ ( L - F ) ) |-> ( S ` ( x + F ) ) ) |
5 |
|
fvex |
|- ( S ` ( X + F ) ) e. _V |
6 |
3 4 5
|
fvmpt |
|- ( X e. ( 0 ..^ ( L - F ) ) -> ( ( x e. ( 0 ..^ ( L - F ) ) |-> ( S ` ( x + F ) ) ) ` X ) = ( S ` ( X + F ) ) ) |
7 |
2 6
|
sylan9eq |
|- ( ( ( S e. Word A /\ F e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` S ) ) ) /\ X e. ( 0 ..^ ( L - F ) ) ) -> ( ( S substr <. F , L >. ) ` X ) = ( S ` ( X + F ) ) ) |