Step |
Hyp |
Ref |
Expression |
1 |
|
opelxp |
|- ( <. F , L >. e. ( ZZ X. ZZ ) <-> ( F e. ZZ /\ L e. ZZ ) ) |
2 |
1
|
biimpi |
|- ( <. F , L >. e. ( ZZ X. ZZ ) -> ( F e. ZZ /\ L e. ZZ ) ) |
3 |
2
|
adantl |
|- ( ( S e. _V /\ <. F , L >. e. ( ZZ X. ZZ ) ) -> ( F e. ZZ /\ L e. ZZ ) ) |
4 |
|
df-substr |
|- substr = ( s e. _V , b e. ( ZZ X. ZZ ) |-> if ( ( ( 1st ` b ) ..^ ( 2nd ` b ) ) C_ dom s , ( x e. ( 0 ..^ ( ( 2nd ` b ) - ( 1st ` b ) ) ) |-> ( s ` ( x + ( 1st ` b ) ) ) ) , (/) ) ) |
5 |
4
|
mpondm0 |
|- ( -. ( S e. _V /\ <. F , L >. e. ( ZZ X. ZZ ) ) -> ( S substr <. F , L >. ) = (/) ) |
6 |
3 5
|
nsyl5 |
|- ( -. ( F e. ZZ /\ L e. ZZ ) -> ( S substr <. F , L >. ) = (/) ) |