Step |
Hyp |
Ref |
Expression |
1 |
|
elfznn0 |
|- ( N e. ( 0 ... ( # ` W ) ) -> N e. NN0 ) |
2 |
1
|
anim2i |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) -> ( W e. Word V /\ N e. NN0 ) ) |
3 |
2
|
adantr |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) /\ ( K e. ( 0 ... N ) /\ L e. ( K ... N ) ) ) -> ( W e. Word V /\ N e. NN0 ) ) |
4 |
|
pfxval |
|- ( ( W e. Word V /\ N e. NN0 ) -> ( W prefix N ) = ( W substr <. 0 , N >. ) ) |
5 |
3 4
|
syl |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) /\ ( K e. ( 0 ... N ) /\ L e. ( K ... N ) ) ) -> ( W prefix N ) = ( W substr <. 0 , N >. ) ) |
6 |
5
|
oveq1d |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) /\ ( K e. ( 0 ... N ) /\ L e. ( K ... N ) ) ) -> ( ( W prefix N ) substr <. K , L >. ) = ( ( W substr <. 0 , N >. ) substr <. K , L >. ) ) |
7 |
|
simpl |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) -> W e. Word V ) |
8 |
|
simpr |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) -> N e. ( 0 ... ( # ` W ) ) ) |
9 |
|
0elfz |
|- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
10 |
1 9
|
syl |
|- ( N e. ( 0 ... ( # ` W ) ) -> 0 e. ( 0 ... N ) ) |
11 |
10
|
adantl |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) -> 0 e. ( 0 ... N ) ) |
12 |
7 8 11
|
3jca |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) -> ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ 0 e. ( 0 ... N ) ) ) |
13 |
12
|
adantr |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) /\ ( K e. ( 0 ... N ) /\ L e. ( K ... N ) ) ) -> ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ 0 e. ( 0 ... N ) ) ) |
14 |
|
elfzelz |
|- ( N e. ( 0 ... ( # ` W ) ) -> N e. ZZ ) |
15 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
16 |
15
|
subid1d |
|- ( N e. ZZ -> ( N - 0 ) = N ) |
17 |
16
|
eqcomd |
|- ( N e. ZZ -> N = ( N - 0 ) ) |
18 |
14 17
|
syl |
|- ( N e. ( 0 ... ( # ` W ) ) -> N = ( N - 0 ) ) |
19 |
18
|
adantl |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) -> N = ( N - 0 ) ) |
20 |
19
|
oveq2d |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) -> ( 0 ... N ) = ( 0 ... ( N - 0 ) ) ) |
21 |
20
|
eleq2d |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) -> ( K e. ( 0 ... N ) <-> K e. ( 0 ... ( N - 0 ) ) ) ) |
22 |
19
|
oveq2d |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) -> ( K ... N ) = ( K ... ( N - 0 ) ) ) |
23 |
22
|
eleq2d |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) -> ( L e. ( K ... N ) <-> L e. ( K ... ( N - 0 ) ) ) ) |
24 |
21 23
|
anbi12d |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) -> ( ( K e. ( 0 ... N ) /\ L e. ( K ... N ) ) <-> ( K e. ( 0 ... ( N - 0 ) ) /\ L e. ( K ... ( N - 0 ) ) ) ) ) |
25 |
24
|
biimpa |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) /\ ( K e. ( 0 ... N ) /\ L e. ( K ... N ) ) ) -> ( K e. ( 0 ... ( N - 0 ) ) /\ L e. ( K ... ( N - 0 ) ) ) ) |
26 |
|
swrdswrd |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ 0 e. ( 0 ... N ) ) -> ( ( K e. ( 0 ... ( N - 0 ) ) /\ L e. ( K ... ( N - 0 ) ) ) -> ( ( W substr <. 0 , N >. ) substr <. K , L >. ) = ( W substr <. ( 0 + K ) , ( 0 + L ) >. ) ) ) |
27 |
13 25 26
|
sylc |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) /\ ( K e. ( 0 ... N ) /\ L e. ( K ... N ) ) ) -> ( ( W substr <. 0 , N >. ) substr <. K , L >. ) = ( W substr <. ( 0 + K ) , ( 0 + L ) >. ) ) |
28 |
|
elfzelz |
|- ( K e. ( 0 ... N ) -> K e. ZZ ) |
29 |
28
|
zcnd |
|- ( K e. ( 0 ... N ) -> K e. CC ) |
30 |
29
|
adantr |
|- ( ( K e. ( 0 ... N ) /\ L e. ( K ... N ) ) -> K e. CC ) |
31 |
30
|
adantl |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) /\ ( K e. ( 0 ... N ) /\ L e. ( K ... N ) ) ) -> K e. CC ) |
32 |
31
|
addid2d |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) /\ ( K e. ( 0 ... N ) /\ L e. ( K ... N ) ) ) -> ( 0 + K ) = K ) |
33 |
|
elfzelz |
|- ( L e. ( K ... N ) -> L e. ZZ ) |
34 |
33
|
zcnd |
|- ( L e. ( K ... N ) -> L e. CC ) |
35 |
34
|
adantl |
|- ( ( K e. ( 0 ... N ) /\ L e. ( K ... N ) ) -> L e. CC ) |
36 |
35
|
adantl |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) /\ ( K e. ( 0 ... N ) /\ L e. ( K ... N ) ) ) -> L e. CC ) |
37 |
36
|
addid2d |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) /\ ( K e. ( 0 ... N ) /\ L e. ( K ... N ) ) ) -> ( 0 + L ) = L ) |
38 |
32 37
|
opeq12d |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) /\ ( K e. ( 0 ... N ) /\ L e. ( K ... N ) ) ) -> <. ( 0 + K ) , ( 0 + L ) >. = <. K , L >. ) |
39 |
38
|
oveq2d |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) /\ ( K e. ( 0 ... N ) /\ L e. ( K ... N ) ) ) -> ( W substr <. ( 0 + K ) , ( 0 + L ) >. ) = ( W substr <. K , L >. ) ) |
40 |
6 27 39
|
3eqtrd |
|- ( ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) /\ ( K e. ( 0 ... N ) /\ L e. ( K ... N ) ) ) -> ( ( W prefix N ) substr <. K , L >. ) = ( W substr <. K , L >. ) ) |
41 |
40
|
ex |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) -> ( ( K e. ( 0 ... N ) /\ L e. ( K ... N ) ) -> ( ( W prefix N ) substr <. K , L >. ) = ( W substr <. K , L >. ) ) ) |