Step |
Hyp |
Ref |
Expression |
1 |
|
swrdcl |
|- ( W e. Word A -> ( W substr <. I , ( I + 1 ) >. ) e. Word A ) |
2 |
|
simpl |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> W e. Word A ) |
3 |
|
elfzouz |
|- ( I e. ( 0 ..^ ( # ` W ) ) -> I e. ( ZZ>= ` 0 ) ) |
4 |
3
|
adantl |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I e. ( ZZ>= ` 0 ) ) |
5 |
|
elfzoelz |
|- ( I e. ( 0 ..^ ( # ` W ) ) -> I e. ZZ ) |
6 |
5
|
adantl |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I e. ZZ ) |
7 |
|
uzid |
|- ( I e. ZZ -> I e. ( ZZ>= ` I ) ) |
8 |
|
peano2uz |
|- ( I e. ( ZZ>= ` I ) -> ( I + 1 ) e. ( ZZ>= ` I ) ) |
9 |
6 7 8
|
3syl |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) e. ( ZZ>= ` I ) ) |
10 |
|
elfzuzb |
|- ( I e. ( 0 ... ( I + 1 ) ) <-> ( I e. ( ZZ>= ` 0 ) /\ ( I + 1 ) e. ( ZZ>= ` I ) ) ) |
11 |
4 9 10
|
sylanbrc |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I e. ( 0 ... ( I + 1 ) ) ) |
12 |
|
fzofzp1 |
|- ( I e. ( 0 ..^ ( # ` W ) ) -> ( I + 1 ) e. ( 0 ... ( # ` W ) ) ) |
13 |
12
|
adantl |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) e. ( 0 ... ( # ` W ) ) ) |
14 |
|
swrdlen |
|- ( ( W e. Word A /\ I e. ( 0 ... ( I + 1 ) ) /\ ( I + 1 ) e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W substr <. I , ( I + 1 ) >. ) ) = ( ( I + 1 ) - I ) ) |
15 |
2 11 13 14
|
syl3anc |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` ( W substr <. I , ( I + 1 ) >. ) ) = ( ( I + 1 ) - I ) ) |
16 |
6
|
zcnd |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I e. CC ) |
17 |
|
ax-1cn |
|- 1 e. CC |
18 |
|
pncan2 |
|- ( ( I e. CC /\ 1 e. CC ) -> ( ( I + 1 ) - I ) = 1 ) |
19 |
16 17 18
|
sylancl |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I + 1 ) - I ) = 1 ) |
20 |
15 19
|
eqtrd |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` ( W substr <. I , ( I + 1 ) >. ) ) = 1 ) |
21 |
|
eqs1 |
|- ( ( ( W substr <. I , ( I + 1 ) >. ) e. Word A /\ ( # ` ( W substr <. I , ( I + 1 ) >. ) ) = 1 ) -> ( W substr <. I , ( I + 1 ) >. ) = <" ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) "> ) |
22 |
1 20 21
|
syl2an2r |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 1 ) >. ) = <" ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) "> ) |
23 |
|
0z |
|- 0 e. ZZ |
24 |
|
snidg |
|- ( 0 e. ZZ -> 0 e. { 0 } ) |
25 |
23 24
|
ax-mp |
|- 0 e. { 0 } |
26 |
19
|
oveq2d |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( 0 ..^ ( ( I + 1 ) - I ) ) = ( 0 ..^ 1 ) ) |
27 |
|
fzo01 |
|- ( 0 ..^ 1 ) = { 0 } |
28 |
26 27
|
eqtrdi |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( 0 ..^ ( ( I + 1 ) - I ) ) = { 0 } ) |
29 |
25 28
|
eleqtrrid |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> 0 e. ( 0 ..^ ( ( I + 1 ) - I ) ) ) |
30 |
|
swrdfv |
|- ( ( ( W e. Word A /\ I e. ( 0 ... ( I + 1 ) ) /\ ( I + 1 ) e. ( 0 ... ( # ` W ) ) ) /\ 0 e. ( 0 ..^ ( ( I + 1 ) - I ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) = ( W ` ( 0 + I ) ) ) |
31 |
2 11 13 29 30
|
syl31anc |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) = ( W ` ( 0 + I ) ) ) |
32 |
|
addid2 |
|- ( I e. CC -> ( 0 + I ) = I ) |
33 |
32
|
eqcomd |
|- ( I e. CC -> I = ( 0 + I ) ) |
34 |
16 33
|
syl |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I = ( 0 + I ) ) |
35 |
34
|
fveq2d |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` I ) = ( W ` ( 0 + I ) ) ) |
36 |
31 35
|
eqtr4d |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) = ( W ` I ) ) |
37 |
36
|
s1eqd |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> <" ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) "> = <" ( W ` I ) "> ) |
38 |
22 37
|
eqtrd |
|- ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 1 ) >. ) = <" ( W ` I ) "> ) |