| Step | Hyp | Ref | Expression | 
						
							| 1 |  | swrdcl |  |-  ( W e. Word A -> ( W substr <. I , ( I + 1 ) >. ) e. Word A ) | 
						
							| 2 |  | simpl |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> W e. Word A ) | 
						
							| 3 |  | elfzouz |  |-  ( I e. ( 0 ..^ ( # ` W ) ) -> I e. ( ZZ>= ` 0 ) ) | 
						
							| 4 | 3 | adantl |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I e. ( ZZ>= ` 0 ) ) | 
						
							| 5 |  | elfzoelz |  |-  ( I e. ( 0 ..^ ( # ` W ) ) -> I e. ZZ ) | 
						
							| 6 | 5 | adantl |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I e. ZZ ) | 
						
							| 7 |  | uzid |  |-  ( I e. ZZ -> I e. ( ZZ>= ` I ) ) | 
						
							| 8 |  | peano2uz |  |-  ( I e. ( ZZ>= ` I ) -> ( I + 1 ) e. ( ZZ>= ` I ) ) | 
						
							| 9 | 6 7 8 | 3syl |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) e. ( ZZ>= ` I ) ) | 
						
							| 10 |  | elfzuzb |  |-  ( I e. ( 0 ... ( I + 1 ) ) <-> ( I e. ( ZZ>= ` 0 ) /\ ( I + 1 ) e. ( ZZ>= ` I ) ) ) | 
						
							| 11 | 4 9 10 | sylanbrc |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I e. ( 0 ... ( I + 1 ) ) ) | 
						
							| 12 |  | fzofzp1 |  |-  ( I e. ( 0 ..^ ( # ` W ) ) -> ( I + 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 14 |  | swrdlen |  |-  ( ( W e. Word A /\ I e. ( 0 ... ( I + 1 ) ) /\ ( I + 1 ) e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W substr <. I , ( I + 1 ) >. ) ) = ( ( I + 1 ) - I ) ) | 
						
							| 15 | 2 11 13 14 | syl3anc |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` ( W substr <. I , ( I + 1 ) >. ) ) = ( ( I + 1 ) - I ) ) | 
						
							| 16 | 6 | zcnd |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I e. CC ) | 
						
							| 17 |  | ax-1cn |  |-  1 e. CC | 
						
							| 18 |  | pncan2 |  |-  ( ( I e. CC /\ 1 e. CC ) -> ( ( I + 1 ) - I ) = 1 ) | 
						
							| 19 | 16 17 18 | sylancl |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I + 1 ) - I ) = 1 ) | 
						
							| 20 | 15 19 | eqtrd |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` ( W substr <. I , ( I + 1 ) >. ) ) = 1 ) | 
						
							| 21 |  | eqs1 |  |-  ( ( ( W substr <. I , ( I + 1 ) >. ) e. Word A /\ ( # ` ( W substr <. I , ( I + 1 ) >. ) ) = 1 ) -> ( W substr <. I , ( I + 1 ) >. ) = <" ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) "> ) | 
						
							| 22 | 1 20 21 | syl2an2r |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 1 ) >. ) = <" ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) "> ) | 
						
							| 23 |  | 0z |  |-  0 e. ZZ | 
						
							| 24 |  | snidg |  |-  ( 0 e. ZZ -> 0 e. { 0 } ) | 
						
							| 25 | 23 24 | ax-mp |  |-  0 e. { 0 } | 
						
							| 26 | 19 | oveq2d |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( 0 ..^ ( ( I + 1 ) - I ) ) = ( 0 ..^ 1 ) ) | 
						
							| 27 |  | fzo01 |  |-  ( 0 ..^ 1 ) = { 0 } | 
						
							| 28 | 26 27 | eqtrdi |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( 0 ..^ ( ( I + 1 ) - I ) ) = { 0 } ) | 
						
							| 29 | 25 28 | eleqtrrid |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> 0 e. ( 0 ..^ ( ( I + 1 ) - I ) ) ) | 
						
							| 30 |  | swrdfv |  |-  ( ( ( W e. Word A /\ I e. ( 0 ... ( I + 1 ) ) /\ ( I + 1 ) e. ( 0 ... ( # ` W ) ) ) /\ 0 e. ( 0 ..^ ( ( I + 1 ) - I ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) = ( W ` ( 0 + I ) ) ) | 
						
							| 31 | 2 11 13 29 30 | syl31anc |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) = ( W ` ( 0 + I ) ) ) | 
						
							| 32 |  | addlid |  |-  ( I e. CC -> ( 0 + I ) = I ) | 
						
							| 33 | 32 | eqcomd |  |-  ( I e. CC -> I = ( 0 + I ) ) | 
						
							| 34 | 16 33 | syl |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I = ( 0 + I ) ) | 
						
							| 35 | 34 | fveq2d |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` I ) = ( W ` ( 0 + I ) ) ) | 
						
							| 36 | 31 35 | eqtr4d |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) = ( W ` I ) ) | 
						
							| 37 | 36 | s1eqd |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> <" ( ( W substr <. I , ( I + 1 ) >. ) ` 0 ) "> = <" ( W ` I ) "> ) | 
						
							| 38 | 22 37 | eqtrd |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 1 ) >. ) = <" ( W ` I ) "> ) |