| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-s2 |  |-  <" ( W ` I ) ( W ` ( I + 1 ) ) "> = ( <" ( W ` I ) "> ++ <" ( W ` ( I + 1 ) ) "> ) | 
						
							| 2 |  | simp1 |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> W e. Word A ) | 
						
							| 3 |  | simp2 |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I e. NN0 ) | 
						
							| 4 |  | elfzo0 |  |-  ( ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( I + 1 ) e. NN0 /\ ( # ` W ) e. NN /\ ( I + 1 ) < ( # ` W ) ) ) | 
						
							| 5 | 4 | simp2bi |  |-  ( ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) -> ( # ` W ) e. NN ) | 
						
							| 6 | 5 | 3ad2ant3 |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` W ) e. NN ) | 
						
							| 7 | 3 | nn0red |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I e. RR ) | 
						
							| 8 |  | peano2nn0 |  |-  ( I e. NN0 -> ( I + 1 ) e. NN0 ) | 
						
							| 9 | 3 8 | syl |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) e. NN0 ) | 
						
							| 10 | 9 | nn0red |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) e. RR ) | 
						
							| 11 | 6 | nnred |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` W ) e. RR ) | 
						
							| 12 | 7 | lep1d |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I <_ ( I + 1 ) ) | 
						
							| 13 |  | elfzolt2 |  |-  ( ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) -> ( I + 1 ) < ( # ` W ) ) | 
						
							| 14 | 13 | 3ad2ant3 |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) < ( # ` W ) ) | 
						
							| 15 | 7 10 11 12 14 | lelttrd |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I < ( # ` W ) ) | 
						
							| 16 |  | elfzo0 |  |-  ( I e. ( 0 ..^ ( # ` W ) ) <-> ( I e. NN0 /\ ( # ` W ) e. NN /\ I < ( # ` W ) ) ) | 
						
							| 17 | 3 6 15 16 | syl3anbrc |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 18 |  | swrds1 |  |-  ( ( W e. Word A /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 1 ) >. ) = <" ( W ` I ) "> ) | 
						
							| 19 | 2 17 18 | syl2anc |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 1 ) >. ) = <" ( W ` I ) "> ) | 
						
							| 20 |  | nn0cn |  |-  ( I e. NN0 -> I e. CC ) | 
						
							| 21 | 20 | 3ad2ant2 |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I e. CC ) | 
						
							| 22 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 23 | 22 | oveq2i |  |-  ( I + 2 ) = ( I + ( 1 + 1 ) ) | 
						
							| 24 |  | ax-1cn |  |-  1 e. CC | 
						
							| 25 |  | addass |  |-  ( ( I e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( I + 1 ) + 1 ) = ( I + ( 1 + 1 ) ) ) | 
						
							| 26 | 24 24 25 | mp3an23 |  |-  ( I e. CC -> ( ( I + 1 ) + 1 ) = ( I + ( 1 + 1 ) ) ) | 
						
							| 27 | 23 26 | eqtr4id |  |-  ( I e. CC -> ( I + 2 ) = ( ( I + 1 ) + 1 ) ) | 
						
							| 28 | 21 27 | syl |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 2 ) = ( ( I + 1 ) + 1 ) ) | 
						
							| 29 | 28 | opeq2d |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> <. ( I + 1 ) , ( I + 2 ) >. = <. ( I + 1 ) , ( ( I + 1 ) + 1 ) >. ) | 
						
							| 30 | 29 | oveq2d |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) = ( W substr <. ( I + 1 ) , ( ( I + 1 ) + 1 ) >. ) ) | 
						
							| 31 |  | swrds1 |  |-  ( ( W e. Word A /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. ( I + 1 ) , ( ( I + 1 ) + 1 ) >. ) = <" ( W ` ( I + 1 ) ) "> ) | 
						
							| 32 | 31 | 3adant2 |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. ( I + 1 ) , ( ( I + 1 ) + 1 ) >. ) = <" ( W ` ( I + 1 ) ) "> ) | 
						
							| 33 | 30 32 | eqtrd |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) = <" ( W ` ( I + 1 ) ) "> ) | 
						
							| 34 | 19 33 | oveq12d |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ++ ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) ) = ( <" ( W ` I ) "> ++ <" ( W ` ( I + 1 ) ) "> ) ) | 
						
							| 35 | 1 34 | eqtr4id |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> <" ( W ` I ) ( W ` ( I + 1 ) ) "> = ( ( W substr <. I , ( I + 1 ) >. ) ++ ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) ) ) | 
						
							| 36 |  | elfz2nn0 |  |-  ( I e. ( 0 ... ( I + 1 ) ) <-> ( I e. NN0 /\ ( I + 1 ) e. NN0 /\ I <_ ( I + 1 ) ) ) | 
						
							| 37 | 3 9 12 36 | syl3anbrc |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> I e. ( 0 ... ( I + 1 ) ) ) | 
						
							| 38 |  | peano2nn0 |  |-  ( ( I + 1 ) e. NN0 -> ( ( I + 1 ) + 1 ) e. NN0 ) | 
						
							| 39 | 9 38 | syl |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I + 1 ) + 1 ) e. NN0 ) | 
						
							| 40 | 28 39 | eqeltrd |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 2 ) e. NN0 ) | 
						
							| 41 | 10 | lep1d |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) <_ ( ( I + 1 ) + 1 ) ) | 
						
							| 42 | 41 28 | breqtrrd |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) <_ ( I + 2 ) ) | 
						
							| 43 |  | elfz2nn0 |  |-  ( ( I + 1 ) e. ( 0 ... ( I + 2 ) ) <-> ( ( I + 1 ) e. NN0 /\ ( I + 2 ) e. NN0 /\ ( I + 1 ) <_ ( I + 2 ) ) ) | 
						
							| 44 | 9 40 42 43 | syl3anbrc |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 1 ) e. ( 0 ... ( I + 2 ) ) ) | 
						
							| 45 |  | fzofzp1 |  |-  ( ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) -> ( ( I + 1 ) + 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 46 | 45 | 3ad2ant3 |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I + 1 ) + 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 47 | 28 46 | eqeltrd |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 48 |  | ccatswrd |  |-  ( ( W e. Word A /\ ( I e. ( 0 ... ( I + 1 ) ) /\ ( I + 1 ) e. ( 0 ... ( I + 2 ) ) /\ ( I + 2 ) e. ( 0 ... ( # ` W ) ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ++ ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) ) = ( W substr <. I , ( I + 2 ) >. ) ) | 
						
							| 49 | 2 37 44 47 48 | syl13anc |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W substr <. I , ( I + 1 ) >. ) ++ ( W substr <. ( I + 1 ) , ( I + 2 ) >. ) ) = ( W substr <. I , ( I + 2 ) >. ) ) | 
						
							| 50 | 35 49 | eqtr2d |  |-  ( ( W e. Word A /\ I e. NN0 /\ ( I + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. I , ( I + 2 ) >. ) = <" ( W ` I ) ( W ` ( I + 1 ) ) "> ) |