Step |
Hyp |
Ref |
Expression |
1 |
|
elfzelz |
|- ( N e. ( 2 ... ( # ` W ) ) -> N e. ZZ ) |
2 |
1
|
zcnd |
|- ( N e. ( 2 ... ( # ` W ) ) -> N e. CC ) |
3 |
|
2cnd |
|- ( N e. ( 2 ... ( # ` W ) ) -> 2 e. CC ) |
4 |
2 3
|
npcand |
|- ( N e. ( 2 ... ( # ` W ) ) -> ( ( N - 2 ) + 2 ) = N ) |
5 |
4
|
eqcomd |
|- ( N e. ( 2 ... ( # ` W ) ) -> N = ( ( N - 2 ) + 2 ) ) |
6 |
5
|
opeq2d |
|- ( N e. ( 2 ... ( # ` W ) ) -> <. ( N - 2 ) , N >. = <. ( N - 2 ) , ( ( N - 2 ) + 2 ) >. ) |
7 |
6
|
oveq2d |
|- ( N e. ( 2 ... ( # ` W ) ) -> ( W substr <. ( N - 2 ) , N >. ) = ( W substr <. ( N - 2 ) , ( ( N - 2 ) + 2 ) >. ) ) |
8 |
7
|
adantl |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( W substr <. ( N - 2 ) , N >. ) = ( W substr <. ( N - 2 ) , ( ( N - 2 ) + 2 ) >. ) ) |
9 |
|
simpl |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> W e. Word V ) |
10 |
|
elfzuz |
|- ( N e. ( 2 ... ( # ` W ) ) -> N e. ( ZZ>= ` 2 ) ) |
11 |
|
uznn0sub |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 2 ) e. NN0 ) |
12 |
10 11
|
syl |
|- ( N e. ( 2 ... ( # ` W ) ) -> ( N - 2 ) e. NN0 ) |
13 |
12
|
adantl |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( N - 2 ) e. NN0 ) |
14 |
|
1cnd |
|- ( N e. ( 2 ... ( # ` W ) ) -> 1 e. CC ) |
15 |
2 3 14
|
subsubd |
|- ( N e. ( 2 ... ( # ` W ) ) -> ( N - ( 2 - 1 ) ) = ( ( N - 2 ) + 1 ) ) |
16 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
17 |
16
|
oveq2i |
|- ( N - ( 2 - 1 ) ) = ( N - 1 ) |
18 |
15 17
|
eqtr3di |
|- ( N e. ( 2 ... ( # ` W ) ) -> ( ( N - 2 ) + 1 ) = ( N - 1 ) ) |
19 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
20 |
|
fzss1 |
|- ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... ( # ` W ) ) C_ ( 1 ... ( # ` W ) ) ) |
21 |
19 20
|
ax-mp |
|- ( 2 ... ( # ` W ) ) C_ ( 1 ... ( # ` W ) ) |
22 |
21
|
sseli |
|- ( N e. ( 2 ... ( # ` W ) ) -> N e. ( 1 ... ( # ` W ) ) ) |
23 |
|
fz1fzo0m1 |
|- ( N e. ( 1 ... ( # ` W ) ) -> ( N - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
24 |
22 23
|
syl |
|- ( N e. ( 2 ... ( # ` W ) ) -> ( N - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
25 |
18 24
|
eqeltrd |
|- ( N e. ( 2 ... ( # ` W ) ) -> ( ( N - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
26 |
25
|
adantl |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( ( N - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
27 |
|
swrds2 |
|- ( ( W e. Word V /\ ( N - 2 ) e. NN0 /\ ( ( N - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. ( N - 2 ) , ( ( N - 2 ) + 2 ) >. ) = <" ( W ` ( N - 2 ) ) ( W ` ( ( N - 2 ) + 1 ) ) "> ) |
28 |
9 13 26 27
|
syl3anc |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( W substr <. ( N - 2 ) , ( ( N - 2 ) + 2 ) >. ) = <" ( W ` ( N - 2 ) ) ( W ` ( ( N - 2 ) + 1 ) ) "> ) |
29 |
|
eqidd |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( W ` ( N - 2 ) ) = ( W ` ( N - 2 ) ) ) |
30 |
18
|
fveq2d |
|- ( N e. ( 2 ... ( # ` W ) ) -> ( W ` ( ( N - 2 ) + 1 ) ) = ( W ` ( N - 1 ) ) ) |
31 |
30
|
adantl |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( W ` ( ( N - 2 ) + 1 ) ) = ( W ` ( N - 1 ) ) ) |
32 |
29 31
|
s2eqd |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> <" ( W ` ( N - 2 ) ) ( W ` ( ( N - 2 ) + 1 ) ) "> = <" ( W ` ( N - 2 ) ) ( W ` ( N - 1 ) ) "> ) |
33 |
8 28 32
|
3eqtrd |
|- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( W substr <. ( N - 2 ) , N >. ) = <" ( W ` ( N - 2 ) ) ( W ` ( N - 1 ) ) "> ) |