| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> W e. Word V ) | 
						
							| 2 |  | nn0z |  |-  ( M e. NN0 -> M e. ZZ ) | 
						
							| 3 | 2 | ad2antrl |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> M e. ZZ ) | 
						
							| 4 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 5 | 4 | ad2antll |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> N e. ZZ ) | 
						
							| 6 |  | swrdlend |  |-  ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( N <_ M -> ( W substr <. M , N >. ) = (/) ) ) | 
						
							| 7 | 1 3 5 6 | syl3anc |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( N <_ M -> ( W substr <. M , N >. ) = (/) ) ) | 
						
							| 8 | 7 | 3impia |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) /\ N <_ M ) -> ( W substr <. M , N >. ) = (/) ) | 
						
							| 9 |  | simplr |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> U e. Word V ) | 
						
							| 10 |  | swrdlend |  |-  ( ( U e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( N <_ M -> ( U substr <. M , N >. ) = (/) ) ) | 
						
							| 11 | 9 3 5 10 | syl3anc |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( N <_ M -> ( U substr <. M , N >. ) = (/) ) ) | 
						
							| 12 | 11 | 3impia |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) /\ N <_ M ) -> ( U substr <. M , N >. ) = (/) ) | 
						
							| 13 | 8 12 | eqtr4d |  |-  ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) /\ N <_ M ) -> ( W substr <. M , N >. ) = ( U substr <. M , N >. ) ) |