Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> W e. Word V ) |
2 |
|
nn0z |
|- ( M e. NN0 -> M e. ZZ ) |
3 |
2
|
ad2antrl |
|- ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> M e. ZZ ) |
4 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
5 |
4
|
ad2antll |
|- ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> N e. ZZ ) |
6 |
|
swrdlend |
|- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( N <_ M -> ( W substr <. M , N >. ) = (/) ) ) |
7 |
1 3 5 6
|
syl3anc |
|- ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( N <_ M -> ( W substr <. M , N >. ) = (/) ) ) |
8 |
7
|
3impia |
|- ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) /\ N <_ M ) -> ( W substr <. M , N >. ) = (/) ) |
9 |
|
simplr |
|- ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> U e. Word V ) |
10 |
|
swrdlend |
|- ( ( U e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( N <_ M -> ( U substr <. M , N >. ) = (/) ) ) |
11 |
9 3 5 10
|
syl3anc |
|- ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( N <_ M -> ( U substr <. M , N >. ) = (/) ) ) |
12 |
11
|
3impia |
|- ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) /\ N <_ M ) -> ( U substr <. M , N >. ) = (/) ) |
13 |
8 12
|
eqtr4d |
|- ( ( ( W e. Word V /\ U e. Word V ) /\ ( M e. NN0 /\ N e. NN0 ) /\ N <_ M ) -> ( W substr <. M , N >. ) = ( U substr <. M , N >. ) ) |