Metamath Proof Explorer


Theorem syl10

Description: A nested syllogism inference. (Contributed by Alan Sare, 17-Jul-2011)

Ref Expression
Hypotheses syl10.1
|- ( ph -> ( ps -> ch ) )
syl10.2
|- ( ph -> ( ps -> ( th -> ta ) ) )
syl10.3
|- ( ch -> ( ta -> et ) )
Assertion syl10
|- ( ph -> ( ps -> ( th -> et ) ) )

Proof

Step Hyp Ref Expression
1 syl10.1
 |-  ( ph -> ( ps -> ch ) )
2 syl10.2
 |-  ( ph -> ( ps -> ( th -> ta ) ) )
3 syl10.3
 |-  ( ch -> ( ta -> et ) )
4 1 3 syl6
 |-  ( ph -> ( ps -> ( ta -> et ) ) )
5 2 4 syldd
 |-  ( ph -> ( ps -> ( th -> et ) ) )