Description: A nested syllogism inference. (Contributed by Alan Sare, 17-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl10.1 | |- ( ph -> ( ps -> ch ) ) |
|
syl10.2 | |- ( ph -> ( ps -> ( th -> ta ) ) ) |
||
syl10.3 | |- ( ch -> ( ta -> et ) ) |
||
Assertion | syl10 | |- ( ph -> ( ps -> ( th -> et ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl10.1 | |- ( ph -> ( ps -> ch ) ) |
|
2 | syl10.2 | |- ( ph -> ( ps -> ( th -> ta ) ) ) |
|
3 | syl10.3 | |- ( ch -> ( ta -> et ) ) |
|
4 | 1 3 | syl6 | |- ( ph -> ( ps -> ( ta -> et ) ) ) |
5 | 2 4 | syldd | |- ( ph -> ( ps -> ( th -> et ) ) ) |