Metamath Proof Explorer


Theorem syl1111anc

Description: Four-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses syl1111anc.1
|- ( ph -> ps )
syl1111anc.2
|- ( ph -> ch )
syl1111anc.3
|- ( ph -> th )
syl1111anc.4
|- ( ph -> ta )
syl1111anc.5
|- ( ( ( ( ps /\ ch ) /\ th ) /\ ta ) -> et )
Assertion syl1111anc
|- ( ph -> et )

Proof

Step Hyp Ref Expression
1 syl1111anc.1
 |-  ( ph -> ps )
2 syl1111anc.2
 |-  ( ph -> ch )
3 syl1111anc.3
 |-  ( ph -> th )
4 syl1111anc.4
 |-  ( ph -> ta )
5 syl1111anc.5
 |-  ( ( ( ( ps /\ ch ) /\ th ) /\ ta ) -> et )
6 1 2 jca
 |-  ( ph -> ( ps /\ ch ) )
7 6 3 4 5 syl21anc
 |-  ( ph -> et )