Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl21anbrc.1 | |- ( ph -> ps ) |
|
syl21anbrc.2 | |- ( ph -> ch ) |
||
syl21anbrc.3 | |- ( ph -> th ) |
||
syl21anbrc.4 | |- ( ta <-> ( ( ps /\ ch ) /\ th ) ) |
||
Assertion | syl21anbrc | |- ( ph -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl21anbrc.1 | |- ( ph -> ps ) |
|
2 | syl21anbrc.2 | |- ( ph -> ch ) |
|
3 | syl21anbrc.3 | |- ( ph -> th ) |
|
4 | syl21anbrc.4 | |- ( ta <-> ( ( ps /\ ch ) /\ th ) ) |
|
5 | 1 2 3 | jca31 | |- ( ph -> ( ( ps /\ ch ) /\ th ) ) |
6 | 5 4 | sylibr | |- ( ph -> ta ) |