Metamath Proof Explorer


Theorem syl21anbrc

Description: Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022)

Ref Expression
Hypotheses syl21anbrc.1
|- ( ph -> ps )
syl21anbrc.2
|- ( ph -> ch )
syl21anbrc.3
|- ( ph -> th )
syl21anbrc.4
|- ( ta <-> ( ( ps /\ ch ) /\ th ) )
Assertion syl21anbrc
|- ( ph -> ta )

Proof

Step Hyp Ref Expression
1 syl21anbrc.1
 |-  ( ph -> ps )
2 syl21anbrc.2
 |-  ( ph -> ch )
3 syl21anbrc.3
 |-  ( ph -> th )
4 syl21anbrc.4
 |-  ( ta <-> ( ( ps /\ ch ) /\ th ) )
5 1 2 3 jca31
 |-  ( ph -> ( ( ps /\ ch ) /\ th ) )
6 5 4 sylibr
 |-  ( ph -> ta )