Description: Deduction related to syl3an with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016) (Proof shortened by Wolf Lammen, 28-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl2an23an.1 | |- ( ph -> ps ) |
|
syl2an23an.2 | |- ( ph -> ch ) |
||
syl2an23an.3 | |- ( ( th /\ ph ) -> ta ) |
||
syl2an23an.4 | |- ( ( ps /\ ch /\ ta ) -> et ) |
||
Assertion | syl2an23an | |- ( ( th /\ ph ) -> et ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an23an.1 | |- ( ph -> ps ) |
|
2 | syl2an23an.2 | |- ( ph -> ch ) |
|
3 | syl2an23an.3 | |- ( ( th /\ ph ) -> ta ) |
|
4 | syl2an23an.4 | |- ( ( ps /\ ch /\ ta ) -> et ) |
|
5 | 1 2 3 4 | syl2an3an | |- ( ( ph /\ ( th /\ ph ) ) -> et ) |
6 | 5 | anabss7 | |- ( ( th /\ ph ) -> et ) |