Metamath Proof Explorer


Theorem syl2an23an

Description: Deduction related to syl3an with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016) (Proof shortened by Wolf Lammen, 28-Jun-2022)

Ref Expression
Hypotheses syl2an23an.1
|- ( ph -> ps )
syl2an23an.2
|- ( ph -> ch )
syl2an23an.3
|- ( ( th /\ ph ) -> ta )
syl2an23an.4
|- ( ( ps /\ ch /\ ta ) -> et )
Assertion syl2an23an
|- ( ( th /\ ph ) -> et )

Proof

Step Hyp Ref Expression
1 syl2an23an.1
 |-  ( ph -> ps )
2 syl2an23an.2
 |-  ( ph -> ch )
3 syl2an23an.3
 |-  ( ( th /\ ph ) -> ta )
4 syl2an23an.4
 |-  ( ( ps /\ ch /\ ta ) -> et )
5 1 2 3 4 syl2an3an
 |-  ( ( ph /\ ( th /\ ph ) ) -> et )
6 5 anabss7
 |-  ( ( th /\ ph ) -> et )