Metamath Proof Explorer


Theorem syl2an3an

Description: syl3an with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016)

Ref Expression
Hypotheses syl2an3an.1
|- ( ph -> ps )
syl2an3an.2
|- ( ph -> ch )
syl2an3an.3
|- ( th -> ta )
syl2an3an.4
|- ( ( ps /\ ch /\ ta ) -> et )
Assertion syl2an3an
|- ( ( ph /\ th ) -> et )

Proof

Step Hyp Ref Expression
1 syl2an3an.1
 |-  ( ph -> ps )
2 syl2an3an.2
 |-  ( ph -> ch )
3 syl2an3an.3
 |-  ( th -> ta )
4 syl2an3an.4
 |-  ( ( ps /\ ch /\ ta ) -> et )
5 1 2 3 4 syl3an
 |-  ( ( ph /\ ph /\ th ) -> et )
6 5 3anidm12
 |-  ( ( ph /\ th ) -> et )