Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl2anb.1 | |- ( ph <-> ps ) |
|
syl2anb.2 | |- ( ta <-> ch ) |
||
syl2anb.3 | |- ( ( ps /\ ch ) -> th ) |
||
Assertion | syl2anb | |- ( ( ph /\ ta ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anb.1 | |- ( ph <-> ps ) |
|
2 | syl2anb.2 | |- ( ta <-> ch ) |
|
3 | syl2anb.3 | |- ( ( ps /\ ch ) -> th ) |
|
4 | 1 3 | sylanb | |- ( ( ph /\ ch ) -> th ) |
5 | 2 4 | sylan2b | |- ( ( ph /\ ta ) -> th ) |