Metamath Proof Explorer


Theorem syl2anb

Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999)

Ref Expression
Hypotheses syl2anb.1
|- ( ph <-> ps )
syl2anb.2
|- ( ta <-> ch )
syl2anb.3
|- ( ( ps /\ ch ) -> th )
Assertion syl2anb
|- ( ( ph /\ ta ) -> th )

Proof

Step Hyp Ref Expression
1 syl2anb.1
 |-  ( ph <-> ps )
2 syl2anb.2
 |-  ( ta <-> ch )
3 syl2anb.3
 |-  ( ( ps /\ ch ) -> th )
4 1 3 sylanb
 |-  ( ( ph /\ ch ) -> th )
5 2 4 sylan2b
 |-  ( ( ph /\ ta ) -> th )