Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl2anb.1 | |- ( ph <-> ps ) |
|
| syl2anb.2 | |- ( ta <-> ch ) |
||
| syl2anb.3 | |- ( ( ps /\ ch ) -> th ) |
||
| Assertion | syl2anb | |- ( ( ph /\ ta ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anb.1 | |- ( ph <-> ps ) |
|
| 2 | syl2anb.2 | |- ( ta <-> ch ) |
|
| 3 | syl2anb.3 | |- ( ( ps /\ ch ) -> th ) |
|
| 4 | 1 3 | sylanb | |- ( ( ph /\ ch ) -> th ) |
| 5 | 2 4 | sylan2b | |- ( ( ph /\ ta ) -> th ) |