Metamath Proof Explorer


Theorem syl2anbr

Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999)

Ref Expression
Hypotheses syl2anbr.1
|- ( ps <-> ph )
syl2anbr.2
|- ( ch <-> ta )
syl2anbr.3
|- ( ( ps /\ ch ) -> th )
Assertion syl2anbr
|- ( ( ph /\ ta ) -> th )

Proof

Step Hyp Ref Expression
1 syl2anbr.1
 |-  ( ps <-> ph )
2 syl2anbr.2
 |-  ( ch <-> ta )
3 syl2anbr.3
 |-  ( ( ps /\ ch ) -> th )
4 1 3 sylanbr
 |-  ( ( ph /\ ch ) -> th )
5 2 4 sylan2br
 |-  ( ( ph /\ ta ) -> th )