Metamath Proof Explorer


Theorem syl2anc2

Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023)

Ref Expression
Hypotheses syl2anc2.1
|- ( ph -> ps )
syl2anc2.2
|- ( ps -> ch )
syl2anc2.3
|- ( ( ps /\ ch ) -> th )
Assertion syl2anc2
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 syl2anc2.1
 |-  ( ph -> ps )
2 syl2anc2.2
 |-  ( ps -> ch )
3 syl2anc2.3
 |-  ( ( ps /\ ch ) -> th )
4 1 2 syl
 |-  ( ph -> ch )
5 1 4 3 syl2anc
 |-  ( ph -> th )