Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl2and.1 | |- ( ph -> ( ps -> ch ) ) |
|
syl2and.2 | |- ( ph -> ( th -> ta ) ) |
||
syl2and.3 | |- ( ph -> ( ( ch /\ ta ) -> et ) ) |
||
Assertion | syl2and | |- ( ph -> ( ( ps /\ th ) -> et ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2and.1 | |- ( ph -> ( ps -> ch ) ) |
|
2 | syl2and.2 | |- ( ph -> ( th -> ta ) ) |
|
3 | syl2and.3 | |- ( ph -> ( ( ch /\ ta ) -> et ) ) |
|
4 | 2 3 | sylan2d | |- ( ph -> ( ( ch /\ th ) -> et ) ) |
5 | 1 4 | syland | |- ( ph -> ( ( ps /\ th ) -> et ) ) |