Metamath Proof Explorer


Theorem syl2and

Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)

Ref Expression
Hypotheses syl2and.1
|- ( ph -> ( ps -> ch ) )
syl2and.2
|- ( ph -> ( th -> ta ) )
syl2and.3
|- ( ph -> ( ( ch /\ ta ) -> et ) )
Assertion syl2and
|- ( ph -> ( ( ps /\ th ) -> et ) )

Proof

Step Hyp Ref Expression
1 syl2and.1
 |-  ( ph -> ( ps -> ch ) )
2 syl2and.2
 |-  ( ph -> ( th -> ta ) )
3 syl2and.3
 |-  ( ph -> ( ( ch /\ ta ) -> et ) )
4 2 3 sylan2d
 |-  ( ph -> ( ( ch /\ th ) -> et ) )
5 1 4 syland
 |-  ( ph -> ( ( ps /\ th ) -> et ) )