Metamath Proof Explorer


Theorem syl2ani

Description: A syllogism inference. (Contributed by NM, 3-Aug-1999)

Ref Expression
Hypotheses syl2ani.1
|- ( ph -> ch )
syl2ani.2
|- ( et -> th )
syl2ani.3
|- ( ps -> ( ( ch /\ th ) -> ta ) )
Assertion syl2ani
|- ( ps -> ( ( ph /\ et ) -> ta ) )

Proof

Step Hyp Ref Expression
1 syl2ani.1
 |-  ( ph -> ch )
2 syl2ani.2
 |-  ( et -> th )
3 syl2ani.3
 |-  ( ps -> ( ( ch /\ th ) -> ta ) )
4 2 3 sylan2i
 |-  ( ps -> ( ( ch /\ et ) -> ta ) )
5 1 4 sylani
 |-  ( ps -> ( ( ph /\ et ) -> ta ) )