Description: A syllogism inference. (Contributed by NM, 3-Aug-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl2ani.1 | |- ( ph -> ch ) |
|
syl2ani.2 | |- ( et -> th ) |
||
syl2ani.3 | |- ( ps -> ( ( ch /\ th ) -> ta ) ) |
||
Assertion | syl2ani | |- ( ps -> ( ( ph /\ et ) -> ta ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2ani.1 | |- ( ph -> ch ) |
|
2 | syl2ani.2 | |- ( et -> th ) |
|
3 | syl2ani.3 | |- ( ps -> ( ( ch /\ th ) -> ta ) ) |
|
4 | 2 3 | sylan2i | |- ( ps -> ( ( ch /\ et ) -> ta ) ) |
5 | 1 4 | sylani | |- ( ps -> ( ( ph /\ et ) -> ta ) ) |