Metamath Proof Explorer


Theorem syl2im

Description: Replace two antecedents. Implication-only version of syl2an . (Contributed by Wolf Lammen, 14-May-2013)

Ref Expression
Hypotheses syl2im.1
|- ( ph -> ps )
syl2im.2
|- ( ch -> th )
syl2im.3
|- ( ps -> ( th -> ta ) )
Assertion syl2im
|- ( ph -> ( ch -> ta ) )

Proof

Step Hyp Ref Expression
1 syl2im.1
 |-  ( ph -> ps )
2 syl2im.2
 |-  ( ch -> th )
3 syl2im.3
 |-  ( ps -> ( th -> ta ) )
4 2 3 syl5
 |-  ( ps -> ( ch -> ta ) )
5 1 4 syl
 |-  ( ph -> ( ch -> ta ) )