Description: A syllogism inference. (Contributed by NM, 22-Aug-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl3an1b.1 | |- ( ph <-> ps ) |
|
syl3an1b.2 | |- ( ( ps /\ ch /\ th ) -> ta ) |
||
Assertion | syl3an1b | |- ( ( ph /\ ch /\ th ) -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an1b.1 | |- ( ph <-> ps ) |
|
2 | syl3an1b.2 | |- ( ( ps /\ ch /\ th ) -> ta ) |
|
3 | 1 | biimpi | |- ( ph -> ps ) |
4 | 3 2 | syl3an1 | |- ( ( ph /\ ch /\ th ) -> ta ) |