Description: A syllogism inference. (Contributed by NM, 22-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3an3br.1 | |- ( th <-> ph ) | |
| syl3an3br.2 | |- ( ( ps /\ ch /\ th ) -> ta ) | ||
| Assertion | syl3an3br | |- ( ( ps /\ ch /\ ph ) -> ta ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl3an3br.1 | |- ( th <-> ph ) | |
| 2 | syl3an3br.2 | |- ( ( ps /\ ch /\ th ) -> ta ) | |
| 3 | 1 | biimpri | |- ( ph -> th ) | 
| 4 | 3 2 | syl3an3 | |- ( ( ps /\ ch /\ ph ) -> ta ) |