Description: Nested syllogism inference conjoining 3 dissimilar antecedents. (Contributed by NM, 1-May-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl3an9b.1 | |- ( ph -> ( ps <-> ch ) ) |
|
syl3an9b.2 | |- ( th -> ( ch <-> ta ) ) |
||
syl3an9b.3 | |- ( et -> ( ta <-> ze ) ) |
||
Assertion | syl3an9b | |- ( ( ph /\ th /\ et ) -> ( ps <-> ze ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an9b.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | syl3an9b.2 | |- ( th -> ( ch <-> ta ) ) |
|
3 | syl3an9b.3 | |- ( et -> ( ta <-> ze ) ) |
|
4 | 1 2 | sylan9bb | |- ( ( ph /\ th ) -> ( ps <-> ta ) ) |
5 | 4 3 | sylan9bb | |- ( ( ( ph /\ th ) /\ et ) -> ( ps <-> ze ) ) |
6 | 5 | 3impa | |- ( ( ph /\ th /\ et ) -> ( ps <-> ze ) ) |