Metamath Proof Explorer


Theorem syl3an9b

Description: Nested syllogism inference conjoining 3 dissimilar antecedents. (Contributed by NM, 1-May-1995)

Ref Expression
Hypotheses syl3an9b.1
|- ( ph -> ( ps <-> ch ) )
syl3an9b.2
|- ( th -> ( ch <-> ta ) )
syl3an9b.3
|- ( et -> ( ta <-> ze ) )
Assertion syl3an9b
|- ( ( ph /\ th /\ et ) -> ( ps <-> ze ) )

Proof

Step Hyp Ref Expression
1 syl3an9b.1
 |-  ( ph -> ( ps <-> ch ) )
2 syl3an9b.2
 |-  ( th -> ( ch <-> ta ) )
3 syl3an9b.3
 |-  ( et -> ( ta <-> ze ) )
4 1 2 sylan9bb
 |-  ( ( ph /\ th ) -> ( ps <-> ta ) )
5 4 3 sylan9bb
 |-  ( ( ( ph /\ th ) /\ et ) -> ( ps <-> ze ) )
6 5 3impa
 |-  ( ( ph /\ th /\ et ) -> ( ps <-> ze ) )