Metamath Proof Explorer


Theorem syl3anb

Description: A triple syllogism inference. (Contributed by NM, 15-Oct-2005)

Ref Expression
Hypotheses syl3anb.1
|- ( ph <-> ps )
syl3anb.2
|- ( ch <-> th )
syl3anb.3
|- ( ta <-> et )
syl3anb.4
|- ( ( ps /\ th /\ et ) -> ze )
Assertion syl3anb
|- ( ( ph /\ ch /\ ta ) -> ze )

Proof

Step Hyp Ref Expression
1 syl3anb.1
 |-  ( ph <-> ps )
2 syl3anb.2
 |-  ( ch <-> th )
3 syl3anb.3
 |-  ( ta <-> et )
4 syl3anb.4
 |-  ( ( ps /\ th /\ et ) -> ze )
5 1 2 3 3anbi123i
 |-  ( ( ph /\ ch /\ ta ) <-> ( ps /\ th /\ et ) )
6 5 4 sylbi
 |-  ( ( ph /\ ch /\ ta ) -> ze )