Description: A triple syllogism inference. (Contributed by NM, 15-Oct-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl3anb.1 | |- ( ph <-> ps ) |
|
syl3anb.2 | |- ( ch <-> th ) |
||
syl3anb.3 | |- ( ta <-> et ) |
||
syl3anb.4 | |- ( ( ps /\ th /\ et ) -> ze ) |
||
Assertion | syl3anb | |- ( ( ph /\ ch /\ ta ) -> ze ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anb.1 | |- ( ph <-> ps ) |
|
2 | syl3anb.2 | |- ( ch <-> th ) |
|
3 | syl3anb.3 | |- ( ta <-> et ) |
|
4 | syl3anb.4 | |- ( ( ps /\ th /\ et ) -> ze ) |
|
5 | 1 2 3 | 3anbi123i | |- ( ( ph /\ ch /\ ta ) <-> ( ps /\ th /\ et ) ) |
6 | 5 4 | sylbi | |- ( ( ph /\ ch /\ ta ) -> ze ) |