Metamath Proof Explorer


Theorem syl3anbr

Description: A triple syllogism inference. (Contributed by NM, 29-Dec-2011)

Ref Expression
Hypotheses syl3anbr.1
|- ( ps <-> ph )
syl3anbr.2
|- ( th <-> ch )
syl3anbr.3
|- ( et <-> ta )
syl3anbr.4
|- ( ( ps /\ th /\ et ) -> ze )
Assertion syl3anbr
|- ( ( ph /\ ch /\ ta ) -> ze )

Proof

Step Hyp Ref Expression
1 syl3anbr.1
 |-  ( ps <-> ph )
2 syl3anbr.2
 |-  ( th <-> ch )
3 syl3anbr.3
 |-  ( et <-> ta )
4 syl3anbr.4
 |-  ( ( ps /\ th /\ et ) -> ze )
5 1 bicomi
 |-  ( ph <-> ps )
6 2 bicomi
 |-  ( ch <-> th )
7 3 bicomi
 |-  ( ta <-> et )
8 5 6 7 4 syl3anb
 |-  ( ( ph /\ ch /\ ta ) -> ze )