Description: A triple syllogism inference. (Contributed by NM, 29-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3anbr.1 | |- ( ps <-> ph ) |
|
| syl3anbr.2 | |- ( th <-> ch ) |
||
| syl3anbr.3 | |- ( et <-> ta ) |
||
| syl3anbr.4 | |- ( ( ps /\ th /\ et ) -> ze ) |
||
| Assertion | syl3anbr | |- ( ( ph /\ ch /\ ta ) -> ze ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anbr.1 | |- ( ps <-> ph ) |
|
| 2 | syl3anbr.2 | |- ( th <-> ch ) |
|
| 3 | syl3anbr.3 | |- ( et <-> ta ) |
|
| 4 | syl3anbr.4 | |- ( ( ps /\ th /\ et ) -> ze ) |
|
| 5 | 1 | bicomi | |- ( ph <-> ps ) |
| 6 | 2 | bicomi | |- ( ch <-> th ) |
| 7 | 3 | bicomi | |- ( ta <-> et ) |
| 8 | 5 6 7 4 | syl3anb | |- ( ( ph /\ ch /\ ta ) -> ze ) |