Description: A triple syllogism inference. (Contributed by NM, 29-Dec-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl3anbr.1 | |- ( ps <-> ph ) |
|
syl3anbr.2 | |- ( th <-> ch ) |
||
syl3anbr.3 | |- ( et <-> ta ) |
||
syl3anbr.4 | |- ( ( ps /\ th /\ et ) -> ze ) |
||
Assertion | syl3anbr | |- ( ( ph /\ ch /\ ta ) -> ze ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anbr.1 | |- ( ps <-> ph ) |
|
2 | syl3anbr.2 | |- ( th <-> ch ) |
|
3 | syl3anbr.3 | |- ( et <-> ta ) |
|
4 | syl3anbr.4 | |- ( ( ps /\ th /\ et ) -> ze ) |
|
5 | 1 | bicomi | |- ( ph <-> ps ) |
6 | 2 | bicomi | |- ( ch <-> th ) |
7 | 3 | bicomi | |- ( ta <-> et ) |
8 | 5 6 7 4 | syl3anb | |- ( ( ph /\ ch /\ ta ) -> ze ) |