Metamath Proof Explorer


Theorem syl3anl

Description: A triple syllogism inference. (Contributed by NM, 24-Dec-2006)

Ref Expression
Hypotheses syl3anl.1
|- ( ph -> ps )
syl3anl.2
|- ( ch -> th )
syl3anl.3
|- ( ta -> et )
syl3anl.4
|- ( ( ( ps /\ th /\ et ) /\ ze ) -> si )
Assertion syl3anl
|- ( ( ( ph /\ ch /\ ta ) /\ ze ) -> si )

Proof

Step Hyp Ref Expression
1 syl3anl.1
 |-  ( ph -> ps )
2 syl3anl.2
 |-  ( ch -> th )
3 syl3anl.3
 |-  ( ta -> et )
4 syl3anl.4
 |-  ( ( ( ps /\ th /\ et ) /\ ze ) -> si )
5 1 2 3 3anim123i
 |-  ( ( ph /\ ch /\ ta ) -> ( ps /\ th /\ et ) )
6 5 4 sylan
 |-  ( ( ( ph /\ ch /\ ta ) /\ ze ) -> si )