Metamath Proof Explorer


Theorem syl3anl2

Description: A syllogism inference. (Contributed by NM, 24-Feb-2005) (Proof shortened by Wolf Lammen, 27-Jun-2022)

Ref Expression
Hypotheses syl3anl2.1
|- ( ph -> ch )
syl3anl2.2
|- ( ( ( ps /\ ch /\ th ) /\ ta ) -> et )
Assertion syl3anl2
|- ( ( ( ps /\ ph /\ th ) /\ ta ) -> et )

Proof

Step Hyp Ref Expression
1 syl3anl2.1
 |-  ( ph -> ch )
2 syl3anl2.2
 |-  ( ( ( ps /\ ch /\ th ) /\ ta ) -> et )
3 1 3anim2i
 |-  ( ( ps /\ ph /\ th ) -> ( ps /\ ch /\ th ) )
4 3 2 sylan
 |-  ( ( ( ps /\ ph /\ th ) /\ ta ) -> et )