Description: A syllogism inference. (Contributed by NM, 24-Feb-2005) (Proof shortened by Wolf Lammen, 27-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl3anl2.1 | |- ( ph -> ch ) |
|
syl3anl2.2 | |- ( ( ( ps /\ ch /\ th ) /\ ta ) -> et ) |
||
Assertion | syl3anl2 | |- ( ( ( ps /\ ph /\ th ) /\ ta ) -> et ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anl2.1 | |- ( ph -> ch ) |
|
2 | syl3anl2.2 | |- ( ( ( ps /\ ch /\ th ) /\ ta ) -> et ) |
|
3 | 1 | 3anim2i | |- ( ( ps /\ ph /\ th ) -> ( ps /\ ch /\ th ) ) |
4 | 3 2 | sylan | |- ( ( ( ps /\ ph /\ th ) /\ ta ) -> et ) |