Metamath Proof Explorer


Theorem syl3anl3

Description: A syllogism inference. (Contributed by NM, 24-Feb-2005)

Ref Expression
Hypotheses syl3anl3.1
|- ( ph -> th )
syl3anl3.2
|- ( ( ( ps /\ ch /\ th ) /\ ta ) -> et )
Assertion syl3anl3
|- ( ( ( ps /\ ch /\ ph ) /\ ta ) -> et )

Proof

Step Hyp Ref Expression
1 syl3anl3.1
 |-  ( ph -> th )
2 syl3anl3.2
 |-  ( ( ( ps /\ ch /\ th ) /\ ta ) -> et )
3 1 3anim3i
 |-  ( ( ps /\ ch /\ ph ) -> ( ps /\ ch /\ th ) )
4 3 2 sylan
 |-  ( ( ( ps /\ ch /\ ph ) /\ ta ) -> et )