Description: A syllogism inference. (Contributed by NM, 31-Jul-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3anr1.1 | |- ( ph -> ps ) | |
| syl3anr1.2 | |- ( ( ch /\ ( ps /\ th /\ ta ) ) -> et ) | ||
| Assertion | syl3anr1 | |- ( ( ch /\ ( ph /\ th /\ ta ) ) -> et ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl3anr1.1 | |- ( ph -> ps ) | |
| 2 | syl3anr1.2 | |- ( ( ch /\ ( ps /\ th /\ ta ) ) -> et ) | |
| 3 | 1 | 3anim1i | |- ( ( ph /\ th /\ ta ) -> ( ps /\ th /\ ta ) ) | 
| 4 | 3 2 | sylan2 | |- ( ( ch /\ ( ph /\ th /\ ta ) ) -> et ) |