Description: A syllogism inference. (Contributed by NM, 31-Jul-2007)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl3anr1.1 | |- ( ph -> ps ) |
|
syl3anr1.2 | |- ( ( ch /\ ( ps /\ th /\ ta ) ) -> et ) |
||
Assertion | syl3anr1 | |- ( ( ch /\ ( ph /\ th /\ ta ) ) -> et ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anr1.1 | |- ( ph -> ps ) |
|
2 | syl3anr1.2 | |- ( ( ch /\ ( ps /\ th /\ ta ) ) -> et ) |
|
3 | 1 | 3anim1i | |- ( ( ph /\ th /\ ta ) -> ( ps /\ th /\ ta ) ) |
4 | 3 2 | sylan2 | |- ( ( ch /\ ( ph /\ th /\ ta ) ) -> et ) |