Metamath Proof Explorer


Theorem syl3anr1

Description: A syllogism inference. (Contributed by NM, 31-Jul-2007)

Ref Expression
Hypotheses syl3anr1.1
|- ( ph -> ps )
syl3anr1.2
|- ( ( ch /\ ( ps /\ th /\ ta ) ) -> et )
Assertion syl3anr1
|- ( ( ch /\ ( ph /\ th /\ ta ) ) -> et )

Proof

Step Hyp Ref Expression
1 syl3anr1.1
 |-  ( ph -> ps )
2 syl3anr1.2
 |-  ( ( ch /\ ( ps /\ th /\ ta ) ) -> et )
3 1 3anim1i
 |-  ( ( ph /\ th /\ ta ) -> ( ps /\ th /\ ta ) )
4 3 2 sylan2
 |-  ( ( ch /\ ( ph /\ th /\ ta ) ) -> et )