Description: A syllogism inference. (Contributed by NM, 1-Aug-2007) (Proof shortened by Wolf Lammen, 27-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl3anr2.1 | |- ( ph -> th ) |
|
syl3anr2.2 | |- ( ( ch /\ ( ps /\ th /\ ta ) ) -> et ) |
||
Assertion | syl3anr2 | |- ( ( ch /\ ( ps /\ ph /\ ta ) ) -> et ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anr2.1 | |- ( ph -> th ) |
|
2 | syl3anr2.2 | |- ( ( ch /\ ( ps /\ th /\ ta ) ) -> et ) |
|
3 | 1 | 3anim2i | |- ( ( ps /\ ph /\ ta ) -> ( ps /\ th /\ ta ) ) |
4 | 3 2 | sylan2 | |- ( ( ch /\ ( ps /\ ph /\ ta ) ) -> et ) |