Description: A syllogism inference. (Contributed by NM, 1-Aug-2007) (Proof shortened by Wolf Lammen, 27-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3anr2.1 | |- ( ph -> th ) | |
| syl3anr2.2 | |- ( ( ch /\ ( ps /\ th /\ ta ) ) -> et ) | ||
| Assertion | syl3anr2 | |- ( ( ch /\ ( ps /\ ph /\ ta ) ) -> et ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl3anr2.1 | |- ( ph -> th ) | |
| 2 | syl3anr2.2 | |- ( ( ch /\ ( ps /\ th /\ ta ) ) -> et ) | |
| 3 | 1 | 3anim2i | |- ( ( ps /\ ph /\ ta ) -> ( ps /\ th /\ ta ) ) | 
| 4 | 3 2 | sylan2 | |- ( ( ch /\ ( ps /\ ph /\ ta ) ) -> et ) |