Metamath Proof Explorer


Theorem syl3anr3

Description: A syllogism inference. (Contributed by NM, 23-Aug-2007)

Ref Expression
Hypotheses syl3anr3.1
|- ( ph -> ta )
syl3anr3.2
|- ( ( ch /\ ( ps /\ th /\ ta ) ) -> et )
Assertion syl3anr3
|- ( ( ch /\ ( ps /\ th /\ ph ) ) -> et )

Proof

Step Hyp Ref Expression
1 syl3anr3.1
 |-  ( ph -> ta )
2 syl3anr3.2
 |-  ( ( ch /\ ( ps /\ th /\ ta ) ) -> et )
3 1 3anim3i
 |-  ( ( ps /\ th /\ ph ) -> ( ps /\ th /\ ta ) )
4 3 2 sylan2
 |-  ( ( ch /\ ( ps /\ th /\ ph ) ) -> et )