Metamath Proof Explorer


Theorem syl3c

Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 7-Jul-2011)

Ref Expression
Hypotheses syl3c.1
|- ( ph -> ps )
syl3c.2
|- ( ph -> ch )
syl3c.3
|- ( ph -> th )
syl3c.4
|- ( ps -> ( ch -> ( th -> ta ) ) )
Assertion syl3c
|- ( ph -> ta )

Proof

Step Hyp Ref Expression
1 syl3c.1
 |-  ( ph -> ps )
2 syl3c.2
 |-  ( ph -> ch )
3 syl3c.3
 |-  ( ph -> th )
4 syl3c.4
 |-  ( ps -> ( ch -> ( th -> ta ) ) )
5 1 2 4 sylc
 |-  ( ph -> ( th -> ta ) )
6 3 5 mpd
 |-  ( ph -> ta )