Metamath Proof Explorer


Theorem syl56

Description: Combine syl5 and syl6 . (Contributed by NM, 14-Nov-2013)

Ref Expression
Hypotheses syl56.1
|- ( ph -> ps )
syl56.2
|- ( ch -> ( ps -> th ) )
syl56.3
|- ( th -> ta )
Assertion syl56
|- ( ch -> ( ph -> ta ) )

Proof

Step Hyp Ref Expression
1 syl56.1
 |-  ( ph -> ps )
2 syl56.2
 |-  ( ch -> ( ps -> th ) )
3 syl56.3
 |-  ( th -> ta )
4 2 3 syl6
 |-  ( ch -> ( ps -> ta ) )
5 1 4 syl5
 |-  ( ch -> ( ph -> ta ) )