Description: Virtual deduction proof of syl5imp . The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1:: | |- (. ( ph -> ( ps -> ch ) ) ->. ( ph -> ( ps -> ch ) ) ). |
2:1,?: e1a | |- (. ( ph -> ( ps -> ch ) ) ->. ( ps -> ( ph -> ch ) ) ). |
3:: | |- (. ( ph -> ( ps -> ch ) ) ,. ( th -> ps ) ->. ( th -> ps ) ). |
4:3,2,?: e21 | |- (. ( ph -> ( ps -> ch ) ) ,. ( th -> ps ) ->. ( th -> ( ph -> ch ) ) ). |
5:4,?: e2 | |- (. ( ph -> ( ps -> ch ) ) ,. ( th -> ps ) ->. ( ph -> ( th -> ch ) ) ). |
6:5: | |- (. ( ph -> ( ps -> ch ) ) ->. ( ( th -> ps ) -> ( ph -> ( th -> ch ) ) ) ). |
qed:6: | |- ( ( ph -> ( ps -> ch ) ) -> ( ( th -> ps ) -> ( ph -> ( th -> ch ) ) ) ) |
Ref | Expression | ||
---|---|---|---|
Assertion | syl5impVD | |- ( ( ph -> ( ps -> ch ) ) -> ( ( th -> ps ) -> ( ph -> ( th -> ch ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn2 | |- (. ( ph -> ( ps -> ch ) ) ,. ( th -> ps ) ->. ( th -> ps ) ). |
|
2 | idn1 | |- (. ( ph -> ( ps -> ch ) ) ->. ( ph -> ( ps -> ch ) ) ). |
|
3 | pm2.04 | |- ( ( ph -> ( ps -> ch ) ) -> ( ps -> ( ph -> ch ) ) ) |
|
4 | 2 3 | e1a | |- (. ( ph -> ( ps -> ch ) ) ->. ( ps -> ( ph -> ch ) ) ). |
5 | imim1 | |- ( ( th -> ps ) -> ( ( ps -> ( ph -> ch ) ) -> ( th -> ( ph -> ch ) ) ) ) |
|
6 | 1 4 5 | e21 | |- (. ( ph -> ( ps -> ch ) ) ,. ( th -> ps ) ->. ( th -> ( ph -> ch ) ) ). |
7 | pm2.04 | |- ( ( th -> ( ph -> ch ) ) -> ( ph -> ( th -> ch ) ) ) |
|
8 | 6 7 | e2 | |- (. ( ph -> ( ps -> ch ) ) ,. ( th -> ps ) ->. ( ph -> ( th -> ch ) ) ). |
9 | 8 | in2 | |- (. ( ph -> ( ps -> ch ) ) ->. ( ( th -> ps ) -> ( ph -> ( th -> ch ) ) ) ). |
10 | 9 | in1 | |- ( ( ph -> ( ps -> ch ) ) -> ( ( th -> ps ) -> ( ph -> ( th -> ch ) ) ) ) |