Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl6an.1 | |- ( ph -> ps ) |
|
| syl6an.2 | |- ( ph -> ( ch -> th ) ) |
||
| syl6an.3 | |- ( ( ps /\ th ) -> ta ) |
||
| Assertion | syl6an | |- ( ph -> ( ch -> ta ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6an.1 | |- ( ph -> ps ) |
|
| 2 | syl6an.2 | |- ( ph -> ( ch -> th ) ) |
|
| 3 | syl6an.3 | |- ( ( ps /\ th ) -> ta ) |
|
| 4 | 3 | ex | |- ( ps -> ( th -> ta ) ) |
| 5 | 1 2 4 | sylsyld | |- ( ph -> ( ch -> ta ) ) |