Metamath Proof Explorer


Theorem syl6an

Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011)

Ref Expression
Hypotheses syl6an.1
|- ( ph -> ps )
syl6an.2
|- ( ph -> ( ch -> th ) )
syl6an.3
|- ( ( ps /\ th ) -> ta )
Assertion syl6an
|- ( ph -> ( ch -> ta ) )

Proof

Step Hyp Ref Expression
1 syl6an.1
 |-  ( ph -> ps )
2 syl6an.2
 |-  ( ph -> ( ch -> th ) )
3 syl6an.3
 |-  ( ( ps /\ th ) -> ta )
4 3 ex
 |-  ( ps -> ( th -> ta ) )
5 1 2 4 sylsyld
 |-  ( ph -> ( ch -> ta ) )