Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl6an.1 | |- ( ph -> ps ) |
|
syl6an.2 | |- ( ph -> ( ch -> th ) ) |
||
syl6an.3 | |- ( ( ps /\ th ) -> ta ) |
||
Assertion | syl6an | |- ( ph -> ( ch -> ta ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6an.1 | |- ( ph -> ps ) |
|
2 | syl6an.2 | |- ( ph -> ( ch -> th ) ) |
|
3 | syl6an.3 | |- ( ( ps /\ th ) -> ta ) |
|
4 | 3 | ex | |- ( ps -> ( th -> ta ) ) |
5 | 1 2 4 | sylsyld | |- ( ph -> ( ch -> ta ) ) |