Metamath Proof Explorer


Theorem syl6c

Description: Inference combining syl6 with contraction. (Contributed by Alan Sare, 2-May-2011)

Ref Expression
Hypotheses syl6c.1
|- ( ph -> ( ps -> ch ) )
syl6c.2
|- ( ph -> ( ps -> th ) )
syl6c.3
|- ( ch -> ( th -> ta ) )
Assertion syl6c
|- ( ph -> ( ps -> ta ) )

Proof

Step Hyp Ref Expression
1 syl6c.1
 |-  ( ph -> ( ps -> ch ) )
2 syl6c.2
 |-  ( ph -> ( ps -> th ) )
3 syl6c.3
 |-  ( ch -> ( th -> ta ) )
4 1 3 syl6
 |-  ( ph -> ( ps -> ( th -> ta ) ) )
5 2 4 mpdd
 |-  ( ph -> ( ps -> ta ) )