Metamath Proof Explorer


Theorem syl6ci

Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012)

Ref Expression
Hypotheses syl6ci.1
|- ( ph -> ( ps -> ch ) )
syl6ci.2
|- ( ph -> th )
syl6ci.3
|- ( ch -> ( th -> ta ) )
Assertion syl6ci
|- ( ph -> ( ps -> ta ) )

Proof

Step Hyp Ref Expression
1 syl6ci.1
 |-  ( ph -> ( ps -> ch ) )
2 syl6ci.2
 |-  ( ph -> th )
3 syl6ci.3
 |-  ( ch -> ( th -> ta ) )
4 2 a1d
 |-  ( ph -> ( ps -> th ) )
5 1 4 3 syl6c
 |-  ( ph -> ( ps -> ta ) )