Metamath Proof Explorer


Theorem syl6mpi

Description: A syllogism inference. (Contributed by Alan Sare, 8-Jul-2011) (Proof shortened by Wolf Lammen, 13-Sep-2012)

Ref Expression
Hypotheses syl6mpi.1
|- ( ph -> ( ps -> ch ) )
syl6mpi.2
|- th
syl6mpi.3
|- ( ch -> ( th -> ta ) )
Assertion syl6mpi
|- ( ph -> ( ps -> ta ) )

Proof

Step Hyp Ref Expression
1 syl6mpi.1
 |-  ( ph -> ( ps -> ch ) )
2 syl6mpi.2
 |-  th
3 syl6mpi.3
 |-  ( ch -> ( th -> ta ) )
4 2 3 mpi
 |-  ( ch -> ta )
5 1 4 syl6
 |-  ( ph -> ( ps -> ta ) )