Description: A syllogism inference. (Contributed by Alan Sare, 8-Jul-2011) (Proof shortened by Wolf Lammen, 13-Sep-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl6mpi.1 | |- ( ph -> ( ps -> ch ) ) |
|
syl6mpi.2 | |- th |
||
syl6mpi.3 | |- ( ch -> ( th -> ta ) ) |
||
Assertion | syl6mpi | |- ( ph -> ( ps -> ta ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6mpi.1 | |- ( ph -> ( ps -> ch ) ) |
|
2 | syl6mpi.2 | |- th |
|
3 | syl6mpi.3 | |- ( ch -> ( th -> ta ) ) |
|
4 | 2 3 | mpi | |- ( ch -> ta ) |
5 | 1 4 | syl6 | |- ( ph -> ( ps -> ta ) ) |