Metamath Proof Explorer


Theorem syl7bi

Description: A mixed syllogism inference from a doubly nested implication and a biconditional. (Contributed by NM, 14-May-1993)

Ref Expression
Hypotheses syl7bi.1
|- ( ph <-> ps )
syl7bi.2
|- ( ch -> ( th -> ( ps -> ta ) ) )
Assertion syl7bi
|- ( ch -> ( th -> ( ph -> ta ) ) )

Proof

Step Hyp Ref Expression
1 syl7bi.1
 |-  ( ph <-> ps )
2 syl7bi.2
 |-  ( ch -> ( th -> ( ps -> ta ) ) )
3 1 biimpi
 |-  ( ph -> ps )
4 3 2 syl7
 |-  ( ch -> ( th -> ( ph -> ta ) ) )