Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl8ib.1 | |- ( ph -> ( ps -> ( ch -> th ) ) ) |
|
syl8ib.2 | |- ( th <-> ta ) |
||
Assertion | syl8ib | |- ( ph -> ( ps -> ( ch -> ta ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl8ib.1 | |- ( ph -> ( ps -> ( ch -> th ) ) ) |
|
2 | syl8ib.2 | |- ( th <-> ta ) |
|
3 | 2 | biimpi | |- ( th -> ta ) |
4 | 1 3 | syl8 | |- ( ph -> ( ps -> ( ch -> ta ) ) ) |