Metamath Proof Explorer


Theorem syl8ib

Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994)

Ref Expression
Hypotheses syl8ib.1
|- ( ph -> ( ps -> ( ch -> th ) ) )
syl8ib.2
|- ( th <-> ta )
Assertion syl8ib
|- ( ph -> ( ps -> ( ch -> ta ) ) )

Proof

Step Hyp Ref Expression
1 syl8ib.1
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
2 syl8ib.2
 |-  ( th <-> ta )
3 2 biimpi
 |-  ( th -> ta )
4 1 3 syl8
 |-  ( ph -> ( ps -> ( ch -> ta ) ) )