Description: A syllogism inference. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 22-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylan.1 | |- ( ph -> ps ) |
|
| sylan.2 | |- ( ( ps /\ ch ) -> th ) |
||
| Assertion | sylan | |- ( ( ph /\ ch ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan.1 | |- ( ph -> ps ) |
|
| 2 | sylan.2 | |- ( ( ps /\ ch ) -> th ) |
|
| 3 | 2 | expcom | |- ( ch -> ( ps -> th ) ) |
| 4 | 1 3 | mpan9 | |- ( ( ph /\ ch ) -> th ) |