Description: A syllogism inference. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 22-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylan2.1 | |- ( ph -> ch ) |
|
sylan2.2 | |- ( ( ps /\ ch ) -> th ) |
||
Assertion | sylan2 | |- ( ( ps /\ ph ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2.1 | |- ( ph -> ch ) |
|
2 | sylan2.2 | |- ( ( ps /\ ch ) -> th ) |
|
3 | 1 | adantl | |- ( ( ps /\ ph ) -> ch ) |
4 | 3 2 | syldan | |- ( ( ps /\ ph ) -> th ) |