Description: A syllogism inference. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 22-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylan2.1 | |- ( ph -> ch ) |
|
| sylan2.2 | |- ( ( ps /\ ch ) -> th ) |
||
| Assertion | sylan2 | |- ( ( ps /\ ph ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2.1 | |- ( ph -> ch ) |
|
| 2 | sylan2.2 | |- ( ( ps /\ ch ) -> th ) |
|
| 3 | 1 | adantl | |- ( ( ps /\ ph ) -> ch ) |
| 4 | 3 2 | syldan | |- ( ( ps /\ ph ) -> th ) |