Metamath Proof Explorer


Theorem sylan2

Description: A syllogism inference. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 22-Nov-2012)

Ref Expression
Hypotheses sylan2.1
|- ( ph -> ch )
sylan2.2
|- ( ( ps /\ ch ) -> th )
Assertion sylan2
|- ( ( ps /\ ph ) -> th )

Proof

Step Hyp Ref Expression
1 sylan2.1
 |-  ( ph -> ch )
2 sylan2.2
 |-  ( ( ps /\ ch ) -> th )
3 1 adantl
 |-  ( ( ps /\ ph ) -> ch )
4 3 2 syldan
 |-  ( ( ps /\ ph ) -> th )