Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylan2d.1 | |- ( ph -> ( ps -> ch ) ) |
|
sylan2d.2 | |- ( ph -> ( ( th /\ ch ) -> ta ) ) |
||
Assertion | sylan2d | |- ( ph -> ( ( th /\ ps ) -> ta ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2d.1 | |- ( ph -> ( ps -> ch ) ) |
|
2 | sylan2d.2 | |- ( ph -> ( ( th /\ ch ) -> ta ) ) |
|
3 | 2 | ancomsd | |- ( ph -> ( ( ch /\ th ) -> ta ) ) |
4 | 1 3 | syland | |- ( ph -> ( ( ps /\ th ) -> ta ) ) |
5 | 4 | ancomsd | |- ( ph -> ( ( th /\ ps ) -> ta ) ) |