Metamath Proof Explorer


Theorem sylan2d

Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)

Ref Expression
Hypotheses sylan2d.1
|- ( ph -> ( ps -> ch ) )
sylan2d.2
|- ( ph -> ( ( th /\ ch ) -> ta ) )
Assertion sylan2d
|- ( ph -> ( ( th /\ ps ) -> ta ) )

Proof

Step Hyp Ref Expression
1 sylan2d.1
 |-  ( ph -> ( ps -> ch ) )
2 sylan2d.2
 |-  ( ph -> ( ( th /\ ch ) -> ta ) )
3 2 ancomsd
 |-  ( ph -> ( ( ch /\ th ) -> ta ) )
4 1 3 syland
 |-  ( ph -> ( ( ps /\ th ) -> ta ) )
5 4 ancomsd
 |-  ( ph -> ( ( th /\ ps ) -> ta ) )