Description: A syllogism inference. (Contributed by NM, 1-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylan2i.1 | |- ( ph -> th ) |
|
| sylan2i.2 | |- ( ps -> ( ( ch /\ th ) -> ta ) ) |
||
| Assertion | sylan2i | |- ( ps -> ( ( ch /\ ph ) -> ta ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan2i.1 | |- ( ph -> th ) |
|
| 2 | sylan2i.2 | |- ( ps -> ( ( ch /\ th ) -> ta ) ) |
|
| 3 | 1 | a1i | |- ( ps -> ( ph -> th ) ) |
| 4 | 3 2 | sylan2d | |- ( ps -> ( ( ch /\ ph ) -> ta ) ) |