Metamath Proof Explorer


Theorem sylan2i

Description: A syllogism inference. (Contributed by NM, 1-Aug-1994)

Ref Expression
Hypotheses sylan2i.1
|- ( ph -> th )
sylan2i.2
|- ( ps -> ( ( ch /\ th ) -> ta ) )
Assertion sylan2i
|- ( ps -> ( ( ch /\ ph ) -> ta ) )

Proof

Step Hyp Ref Expression
1 sylan2i.1
 |-  ( ph -> th )
2 sylan2i.2
 |-  ( ps -> ( ( ch /\ th ) -> ta ) )
3 1 a1i
 |-  ( ps -> ( ph -> th ) )
4 3 2 sylan2d
 |-  ( ps -> ( ( ch /\ ph ) -> ta ) )