Description: A syllogism inference. (Contributed by NM, 1-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylan2i.1 | |- ( ph -> th ) |
|
sylan2i.2 | |- ( ps -> ( ( ch /\ th ) -> ta ) ) |
||
Assertion | sylan2i | |- ( ps -> ( ( ch /\ ph ) -> ta ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2i.1 | |- ( ph -> th ) |
|
2 | sylan2i.2 | |- ( ps -> ( ( ch /\ th ) -> ta ) ) |
|
3 | 1 | a1i | |- ( ps -> ( ph -> th ) ) |
4 | 3 2 | sylan2d | |- ( ps -> ( ( ch /\ ph ) -> ta ) ) |