Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993) (Proof shortened by Andrew Salmon, 7-May-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylan9.1 | |- ( ph -> ( ps -> ch ) ) |
|
sylan9.2 | |- ( th -> ( ch -> ta ) ) |
||
Assertion | sylan9 | |- ( ( ph /\ th ) -> ( ps -> ta ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9.1 | |- ( ph -> ( ps -> ch ) ) |
|
2 | sylan9.2 | |- ( th -> ( ch -> ta ) ) |
|
3 | 1 2 | syl9 | |- ( ph -> ( th -> ( ps -> ta ) ) ) |
4 | 3 | imp | |- ( ( ph /\ th ) -> ( ps -> ta ) ) |