Metamath Proof Explorer


Theorem sylan9

Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993) (Proof shortened by Andrew Salmon, 7-May-2011)

Ref Expression
Hypotheses sylan9.1
|- ( ph -> ( ps -> ch ) )
sylan9.2
|- ( th -> ( ch -> ta ) )
Assertion sylan9
|- ( ( ph /\ th ) -> ( ps -> ta ) )

Proof

Step Hyp Ref Expression
1 sylan9.1
 |-  ( ph -> ( ps -> ch ) )
2 sylan9.2
 |-  ( th -> ( ch -> ta ) )
3 1 2 syl9
 |-  ( ph -> ( th -> ( ps -> ta ) ) )
4 3 imp
 |-  ( ( ph /\ th ) -> ( ps -> ta ) )