Metamath Proof Explorer


Theorem sylan9bb

Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995)

Ref Expression
Hypotheses sylan9bb.1
|- ( ph -> ( ps <-> ch ) )
sylan9bb.2
|- ( th -> ( ch <-> ta ) )
Assertion sylan9bb
|- ( ( ph /\ th ) -> ( ps <-> ta ) )

Proof

Step Hyp Ref Expression
1 sylan9bb.1
 |-  ( ph -> ( ps <-> ch ) )
2 sylan9bb.2
 |-  ( th -> ( ch <-> ta ) )
3 1 adantr
 |-  ( ( ph /\ th ) -> ( ps <-> ch ) )
4 2 adantl
 |-  ( ( ph /\ th ) -> ( ch <-> ta ) )
5 3 4 bitrd
 |-  ( ( ph /\ th ) -> ( ps <-> ta ) )