Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylan9bb.1 | |- ( ph -> ( ps <-> ch ) ) |
|
sylan9bb.2 | |- ( th -> ( ch <-> ta ) ) |
||
Assertion | sylan9bb | |- ( ( ph /\ th ) -> ( ps <-> ta ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bb.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | sylan9bb.2 | |- ( th -> ( ch <-> ta ) ) |
|
3 | 1 | adantr | |- ( ( ph /\ th ) -> ( ps <-> ch ) ) |
4 | 2 | adantl | |- ( ( ph /\ th ) -> ( ch <-> ta ) ) |
5 | 3 4 | bitrd | |- ( ( ph /\ th ) -> ( ps <-> ta ) ) |