Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylan9bbr.1 | |- ( ph -> ( ps <-> ch ) ) |
|
sylan9bbr.2 | |- ( th -> ( ch <-> ta ) ) |
||
Assertion | sylan9bbr | |- ( ( th /\ ph ) -> ( ps <-> ta ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bbr.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | sylan9bbr.2 | |- ( th -> ( ch <-> ta ) ) |
|
3 | 1 2 | sylan9bb | |- ( ( ph /\ th ) -> ( ps <-> ta ) ) |
4 | 3 | ancoms | |- ( ( th /\ ph ) -> ( ps <-> ta ) ) |