Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylan9r.1 | |- ( ph -> ( ps -> ch ) ) |
|
| sylan9r.2 | |- ( th -> ( ch -> ta ) ) |
||
| Assertion | sylan9r | |- ( ( th /\ ph ) -> ( ps -> ta ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9r.1 | |- ( ph -> ( ps -> ch ) ) |
|
| 2 | sylan9r.2 | |- ( th -> ( ch -> ta ) ) |
|
| 3 | 1 2 | syl9r | |- ( th -> ( ph -> ( ps -> ta ) ) ) |
| 4 | 3 | imp | |- ( ( th /\ ph ) -> ( ps -> ta ) ) |