Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004) (Proof shortened by Andrew Salmon, 14-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylan9ss.1 | |- ( ph -> A C_ B ) |
|
| sylan9ss.2 | |- ( ps -> B C_ C ) |
||
| Assertion | sylan9ss | |- ( ( ph /\ ps ) -> A C_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9ss.1 | |- ( ph -> A C_ B ) |
|
| 2 | sylan9ss.2 | |- ( ps -> B C_ C ) |
|
| 3 | sstr | |- ( ( A C_ B /\ B C_ C ) -> A C_ C ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( ph /\ ps ) -> A C_ C ) |