Metamath Proof Explorer


Theorem sylanb

Description: A syllogism inference. (Contributed by NM, 18-May-1994)

Ref Expression
Hypotheses sylanb.1
|- ( ph <-> ps )
sylanb.2
|- ( ( ps /\ ch ) -> th )
Assertion sylanb
|- ( ( ph /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 sylanb.1
 |-  ( ph <-> ps )
2 sylanb.2
 |-  ( ( ps /\ ch ) -> th )
3 1 biimpi
 |-  ( ph -> ps )
4 3 2 sylan
 |-  ( ( ph /\ ch ) -> th )