Description: A syllogism inference. (Contributed by NM, 18-May-1994)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylanb.1 | |- ( ph <-> ps ) |
|
sylanb.2 | |- ( ( ps /\ ch ) -> th ) |
||
Assertion | sylanb | |- ( ( ph /\ ch ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanb.1 | |- ( ph <-> ps ) |
|
2 | sylanb.2 | |- ( ( ps /\ ch ) -> th ) |
|
3 | 1 | biimpi | |- ( ph -> ps ) |
4 | 3 2 | sylan | |- ( ( ph /\ ch ) -> th ) |