Description: A syllogism inference. (Contributed by NM, 18-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylanb.1 | |- ( ph <-> ps ) |
|
| sylanb.2 | |- ( ( ps /\ ch ) -> th ) |
||
| Assertion | sylanb | |- ( ( ph /\ ch ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanb.1 | |- ( ph <-> ps ) |
|
| 2 | sylanb.2 | |- ( ( ps /\ ch ) -> th ) |
|
| 3 | 1 | biimpi | |- ( ph -> ps ) |
| 4 | 3 2 | sylan | |- ( ( ph /\ ch ) -> th ) |